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Reachability
• Given an n-dimensional linear continuous system

ẋ(t) = Ax(t)

and a set of initial states x(0) ∈ X0 ⊆ Rn

• Let ξx0(t) be the trajectory from initial state x0 at time point t
• We are interested in the reachable states for time point t

Rt = {ξx0(t) : x0 ∈ X0}

and more generally for time intervals

R[t0,t1] = {ξx0(t) : x0 ∈ X0, t ∈ [t0, t1]}

• Time-bounded reachability problem: Compute R[0,T ]
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Discretization Methods Evaluation Conclusion

Reachability
• Given an n-dimensional linear continuous system

ẋ(t) = Ax(t)

and a set of initial states x(0) ∈ X0 ⊆ Rn

• General idea: Exploit that for any t0, t1, δ ∈ R≥0 and Φ := eAδ

R[t0+δ,t1+δ] = ΦR[t0,t1]

and compute (over)approximation Ω0 ⊇ R[0,δ]
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Discretization

• Define the sequence Ωk+1 = ΦΩk

• Simple corollary:

Ω0 ⊇ R[0,δ] =⇒
dT/δe⋃
k=0

Ωk ⊇ R[0,T ]
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Discretization
• Given an n-dimensional linear continuous system

ẋ(t) = Ax(t)

and a set of initial states x(0) ∈ X0 ⊆ Rn

• Discretization algorithm
• Choose (small) time step δ ∈ R>0

• Compute (over)approximation Ω0 ⊇ R[0,δ]

• Transform to n-dimensional linear discrete system

xk+1 = Φxk

with initial states x0 ∈ Ω0
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Discretization

• Central problem: “Compute approximation Ω0 ⊇ R[0,δ]”

• Reachability algorithm for discretized system
• Precision depends only on Ω0
• For performance reasons, Ω0 should be convex

(And sometimes more specific, e.g., a zonotope)

• Secondary problem: How to choose δ?
• Large: fast (few iterations for reachability algorithm)
• Small: precise (roughly: limδ→0 Ω0 → R[0,δ])
• Not covered here

• Implemented in JuliaReach1

1S. Bogomolov et al. HSCC. https://github.com/JuliaReach/. 2019.
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Inputs

• Most approaches support systems of the form

ẋ(t) = Ax(t) + Bu(t)

where u(t) is an input signal coming from a known set U :
u(t) ∈ U for all t

• For simplicity we only consider homogeneous systems
(U = {0}) in this presentation
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Notation

• CH(X ): convex hull of X
(smallest convex set containing X )
• X ⊕Y = {x + y : x ∈ X , y ∈ Y}: Minkowski sum of X and Y
• Bp

ε : ball in p-norm of radius ε centered in origin (may omit p)
• �(X ): symmetric interval hull of X

(smallest box containing both X and its reflection in origin)
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Generic approach

• Start with X0 and ΦX0
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Generic approach

• Compute convex hull CH(X0 ∪ ΦX0)
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Generic approach

• Bloat the set to cover all trajectories

CH(X0 ∪ (ΦX0 ⊕H))⊕ J
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First- and second-order methods
• d/dt1:

Ω0 = CH(X0 ∪ ΦX0)⊕ Bε

ε =
(
e‖A‖δ − 1− ‖A‖δ

)
‖X0‖ −

3
8‖A‖

2δ2‖X0‖

• Zonotope2:

Ω0 = zonotope(CH(X0 ∪ ΦX0))⊕ B∞ε
ε =

(
e‖A‖∞δ − 1− ‖A‖∞δ

)
‖X0‖∞

• LGG3:

Ω0 = CH(X0 ∪ (ΦX0 ⊕ Bε))

ε =
(
e‖A‖δ − 1− ‖A‖δ

)
‖X0‖

1E. Asarin et al. HSCC. 2000
2A. Girard. HSCC. 2005
3C. Le Guernic and A. Girard. Nonlinear Analysis: Hybrid Systems (2010)
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Support function

• Let ∅ ( X ⊆ Rn be a compact convex set and d ∈ Rn

The support function of X in direction d is

ρX : Rn → R
ρX (d) = max

x∈X
〈d , x〉

X

{x ∈ Rn : 〈d , x〉 ≤ ρX (d)}

x1

x2d
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Best convex approximation
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Forward and forward-backward methods

• Forward-backward (SpaceEx)1:
Ω0 = CH(

⋃
λ∈[0,1]

Yλ)

Yλ = (1− λ)X0 ⊕ λΦX0 ⊕ (λE+ ∩ (1− λ)E−)
E+ = �(Ψ(|A|, δ) � (A2X0))
E− = �(Ψ(|A|, δ) � (A2ΦX0))

Ψ(A, δ) =
∞∑

i=0

δi+2

(i + 2)!Ai

• Forward (JuliaReach)2:
Ω0 = CH(X0 ∪ (ΦX0 ⊕ E+))

1G. Frehse et al. CAV. 2011
2S. Bogomolov et al. HSCC. 2018
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Correction-hull method

• Interval matrices (CORA)1:

Ω0 = CH(X0 ∪ ΦX0)⊕ FpX0

Fp = E +
p∑

i=2
[δi (i

−i
i−1 − i

−1
i−1 ), 0]A

i

i!

E = n × n matrix filled with [−ε, ε]

ε = (‖A‖∞δ)p+1

(p + 1)!
1

1− α

α = ‖A‖∞δp + 2
!
< 1

• Truncation order p = 4 used in experiments

1M. Althoff, O. Stursberg, and M. Buss. CDC. 2007.
17 / 30



Discretization Methods Evaluation Conclusion

Overview

Discretization

Methods

Evaluation

Conclusion

18 / 30



Discretization Methods Evaluation Conclusion

Experiment 1

• Harmonic oscillator

ẋ(t) =

 0 1
−4π 0

 x(t)

x0 =

 0
10


• Compare methods
• Vary one parameter (δ resp. X0)
• Reference reachable states for small time steps in gray
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Experiment 1 - Example 1

• X0 = [−0.1, 0.1]× [9.9, 10.1] = �(x0, 0.1) (square around x0)
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Experiment 1 - Varying δ
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Experiment 1 - Example 2

• δ = 0.005
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Experiment 1 - Varying X0
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Experiment 2

• Quantitative analysis

• Harmonic oscillator
• Two degree of freedom

• 4 dimensions
• ‖A‖∞ = 10001

• ISS (docking maneuver)
• 270 dimensions
• Nondeterministic inputs
• ‖A‖∞ = 3763

• Vary δ
• Compare support function ρ(d ,Ω0) in direction d = 1

• Lazy computation except for Zonotope and Correction hull
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Experiment 2 - Harmonic oscillator
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Experiment 2 - Two degree of freedom
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• Forward/backward and Forward yield identical results

26 / 30



Discretization Methods Evaluation Conclusion

Experiment 2 - ISS
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• d/dt not applicable here
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Experiment 2 - Run times

• Time in milliseconds

Model d/dt Zonotope1 LGG Fwd/bwd Forward Correction hull1

Oscillator 0.01 0.02 0.01 6.56 0.03 0.23
TDoF 0.03 0.05 0.01 6.17 0.06 0.51

ISS – 32.99 25.93 657.80 476.96 4701.20

1Non-lazy computation
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Conclusion
• Six methods to discretize linear continuous systems
• Choose time step δ and compute Ω0 ⊇ R[0,δ]

• First-/Second-order methods: cheap but coarse, esp. for
large ‖A‖
• Forward-backward method: expensive but precise
• Forward-only method: good compromise
• Correction-hull method: expensive; incomparable; yields

zonotope; applies to interval matrix A

• Also in the paper:
• Homogenization of systems with inputs
• Two-step process with smaller time step
• Efficient implementation
• Computation of eAδ for large A with Krylov subspace
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