A gentle introduction to reachability analysis for dynamical systems

Christian Schilling

Aalborg University, Denmark

July 13, 2022

G UNIVERSITET

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Dynamical systems

• Continuous-time systems modeled by ordinary differential equations

$$\dot{x}(t) = f(x(t))$$
 $(x \in \mathbb{R}^n)$

Initial-value problem: Given an initial state x₀ ∈ ℝⁿ, determine the solution/trajectory following f

Overview	
000000	

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Simulation

• Traditionally we use simulations to understand such systems

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Problems with simulation (1): Precision

• Approaches: reduce the time step, adaptive solvers, ...

• Consider a set of initial states $x_1(0) \in [-1, 1]$

• Consider a set of initial states $x_1(0) \in [-1, 1]$

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Problems with simulation (2): Coverage

• Approach: sample the corners (if the set has corners) (sufficient for linear systems only)

Overview	Nonlinear systems	Linear systems	Hybrid systems	Control systems
0000000	000000	0000	000	000

Problems with simulation (3): Dimensionality

- Sampling coverage is low for higher dimensions
- Vertex sampling: *n*-dimensional hyperrectangle has 2^{*n*} vertices

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Reachability analysis

- Enclose the reachable states $\{x(t) : x(0) \in \mathcal{X}_0, t \ge 0\}$
- Set-based simulations (same intuition)
- Rigorous proof method (captures all solutions)
- Fast (linear systems with thousands of dimensions)

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Reachability analysis

- Enclose the reachable states $\{x(t) : x(0) \in \mathcal{X}_0, t \ge 0\}$
- Set-based simulations (same intuition)
- Rigorous proof method (captures all solutions)
- Fast (linear systems with thousands of dimensions)

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Safety verification

• Task: Verify that no trajectory leads to an error state

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing $\operatorname{Reach}(\mathcal{I}) \, \cap \, \mathring{\mathbb{Q}} = \emptyset$
- Only decidable under strong restrictions

Overview ○○○○○○●○

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing $\operatorname{Reach}(\mathcal{I}) \, \cap \, \mathring{\mathbb{Q}} = \emptyset$
- Only decidable under strong restrictions
- Showing $\widehat{\text{Reach}}(\mathcal{I}) \cap \mathfrak{A} = \emptyset$ is sufficient overapproximation of Reach(\mathcal{I})

Overview ○○○○○○●○

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing $\operatorname{Reach}(\mathcal{I}) \, \cap \, \mathring{\mathbb{Q}} = \emptyset$
- Only decidable under strong restrictions
- Showing $\widehat{\text{Reach}}(\mathcal{I}) \cap \overset{\circ}{\boxtimes} = \emptyset$ is sufficient overapproximation of $\text{Reach}(\mathcal{I})$

restriction: bounded time

ms	Linear	systems
	0000	

Hybrid systems

JuliaReach¹

• Open-source reachability toolbox https://github.com/JuliaReach

Nonlinear syste

Overview

0000000

- Joint work with Marcelo Forets and many others
- Won ARCH-COMP friendly competition 2018 and 2020

tool	BLDC01	CBF01	PLAD04-42	BRKDC01
dimension	48	200	9	4
CORA	2.9	30	1.4	12
HyDRA	0.426	_	1.83	_
JuliaReach	0.0096	12	0.031	0.82
SpaceEx	1.6	319	0.36	21

Linear systems (times in seconds)

¹S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.

Linear	systems
0000	

Hybrid systems

JuliaReach¹

• Open-source reachability toolbox https://github.com/JuliaReach

Nonlinear systems

Overview

0000000

• Won ARCH-COMP friendly competition 2018 and 2020

tool	CVDP20	LALO20-W0.1	LOVO21	SPRE21
dimension	4	7	2	4
Ariadne	11	31	8	_
CORA	7.7	38	23	26
Dynlbex	510	1,851	75	144
JuliaReach	1.5	6.4	3.4	24

Nonlinear systems (times in seconds)

¹S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Examples

Van der Pol oscillator (limit cycle)

Lorenz system (chaotic behavior)

 Nonlinear systems
 Linear systems

 000000
 00000
 0000

Hybrid systems

Control systems

Examples

Quadrotor (robotics)

Dverview

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Examples

Brusselator (chemical reaction)

SEIR model (epidemiology)

- **Reachtube construction** computes a **sequence of sets** until a time horizon
- Checking whether a state is reachable is **undecidable** Hence the true reachable states are **not computable**
- Overapproximation or underapproximation
- Wrapping effect
- Alternative approaches: invariant generation, abstraction

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Taylor models

- Truncated polynomials with interval remainder
- Rigorous arithmetic

$$\begin{split} p_1(x) &= 1.7 - 0.5x_1 + 0.4x_2 + 0.6x_1^2 + [-0.001, 0.001] \\ p_2(x) &= 1.2 + 0.3x_1 + 0.8x_2 + 0.6x_2^2 + [-0.001, 0.001] \\ &x \in [-1, 1]^2 \end{split}$$

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Taylor models

- Truncated polynomials with interval remainder
- Rigorous arithmetic

$$\begin{split} p_1(x) &= 1.7 - 0.5x_1 + 0.4x_2 + 0.6x_1^2 + [-0.001, 0.001] \\ p_2(x) &= 1.2 + 0.3x_1 + 0.8x_2 + 0.6x_2^2 + [-0.001, 0.001] \\ &x \in [-1, 1]^2 \end{split}$$

- Wrap in another Taylor model over time t
- Forward computation (here: two steps)

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Taylor models for reachability

 $\begin{array}{l} 1.2 + 0.3 \, x_1 + 0.8 \, x_2 + 0.6 \, x_2^{-2} + (-1.7 + 0.5 \, x_1 - 0.4 \, x_2 - 0.6 \, x_1^{-2}) \, t + \\ (-0.6 - 0.15 \, x_1 - 0.4 \, x_2 - 0.3 \, x_2^{-2}) \, t^2 + (0.283333333333333 \\ 0.883333333333333 , 1 + 0.086666666666666667 \, x_2 + 0.09999999999999999 \, x_1^{-2}) \\ t^3 + (0.04999999999999999 + 0.012499999999999 \, x_1 + 0.0333333333333 \\ x_2 + 0.0249999999999999 \, x_2^{-2}) \, t^3 + (-0.01416666666666666 \\ 0.08041666666666666667 \, x_1 - 0.033333333333333333333333333 \\ x_2^{-1} + (-0.001666666666666663 - 0.0004166666666666666 \, x_1 - \\ 0.000413166666666666666666 \\ 0.0008373018573015873015873 - 9.920634290634292-5 \, x_1 + 7.93565793569737e-5 \, x_2 + \\ 0.0001904761904761902 \, x_1^{-2}) \, t^7 + (2.9761904761904755e-5 + \\ 7.440476190476189e-6 \, x_1 + 1.941269841269842-5 \, x_2 + 1.4880952380952378e-5 \, x_2^{-2}) \, t^{-1} \\ \end{array}$

• The first set (blue) in time interval [0, 0.225497]

 Overview
 Nonlinear systems

 00000000
 000000

stems

Linear systems

Hybrid systems

Control systems

Linearization

- Carleman linearization turns a polynomial system into an infinite-dimensional linear system
- Truncation leads to an approximate system
- Can bound the approximation error for dissipative, weakly-nonlinear systems → reachability algorithm¹

¹M. Forets and C. Schilling. *RP*. 2021.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Work in progress: Probabilistic initial conditions

Propagate p-boxes through Taylor models

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Linear systems

- Linear systems: $\dot{x}(t) = Ax(t)$
- Reachability problem still not decidable
- Arbitrary precision and fast (solution above: 90 sec)

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Time discretization

 Linear systems allow for wrapping-free algorithms based on efficient set representations¹

¹M. Forets and C. Schilling. *iFM*. 2022.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Time discretization

• Linear systems allow for wrapping-free algorithms based on efficient set representations¹

¹M. Forets and C. Schilling. *iFM*. 2022.

• Linear systems allow for wrapping-free algorithms based on efficient set representations¹

¹M. Forets and C. Schilling. *iFM*. 2022.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Wrapping-free computation

Harmonic oscillator after 500 periods Time step: 0.01 → 314,160 steps Computation time: 0.33 seconds

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2}

Standard algorithm

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2}

Standard algorithm

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

²S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2}

Standard algorithm

 $\mathcal{X}(1) = \Phi \cdot \mathcal{X}(0)$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2}

Standard algorithm

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

²S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

²S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2} Decompose $\mathcal{X}(0)$ into low-dimensional sets $\hat{\mathcal{X}}_1(0)$ and $\hat{\mathcal{X}}_2(0)$ (Note: In general, we do not need to go down to 1D)

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2} Define $\hat{\mathcal{X}}(k) := \hat{\mathcal{X}}_1(k) \times \hat{\mathcal{X}}_2(k)$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

 $\begin{array}{l} & \text{Decomposition approach}^{1,2}\\ \text{Define } \widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)\\ \text{Standard: } \mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0) \end{array}$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

 $\begin{array}{l} & \text{Decomposition approach}^{1,2}\\ \text{Define } \widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)\\ \text{Standard:} \quad \mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0)\\ \text{Decomposed:} \ \widehat{\mathcal{X}}_i(k) = \bigoplus_j \Phi^k_{i,j} \cdot \widehat{\mathcal{X}}_j(0) \end{array}$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2} $\widehat{\mathcal{X}}_{i}(k) = \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \qquad \Phi = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2} $\hat{\mathcal{X}}_i(k) = \bigoplus_j \Phi_{i,j}^k \cdot \hat{\mathcal{X}}_j(0) \qquad \Phi = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$ $\hat{\mathcal{X}}_1(1) = A \cdot \hat{\mathcal{X}}_1(0)$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Decomposition approach^{1,2} $\hat{\mathcal{X}}_i(k) = \bigoplus_j \Phi_{i,j}^k \cdot \hat{\mathcal{X}}_j(0)$ $\hat{\mathcal{X}}_1(1) = A \cdot \hat{\mathcal{X}}_1(0) \oplus B \cdot \hat{\mathcal{X}}_2(0)$ $\Phi = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

¹S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Hybrid and controlled systems

• Combine continuous and discrete behavior

Example: Thermostat controller

Reachability analysis for hybrid systems

picture taken from¹

¹M. Althoff. An Introduction to CORA 2015. ARCH. 2015.

• Check condition for discrete transition in low dimensions

- Only compute high-dimensional set when necessary
- Allows to analyze a 1027-dimensional model in 509 sec

¹S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* (2020).

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Periodic controllers with clock jitter

Electro-mechanical brake

• Analysis for 1,001 transitions: 9 sec¹ (previous work: 13 h)

¹M. Forets, D. Freire, and C. Schilling. *MEMOCODE*. 2020.

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Neural-network controllers¹

¹C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.

Overview I

Nonlinear systems

Linear systems

Hybrid systems

Control systems

Neural-network controllers¹

¹C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.

Linear systems

Hybrid systems

Control systems

Summary

- Reachability analysis allows to reason about sets of behaviors
- Mature for **linear systems** (thousands of dimensions within seconds)
- Still hard for nonlinear and hybrid systems
- New challenges in systems with learned controllers
- Exploiting structure is key
- https://github.com/JuliaReach