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Overview Nonlinear systems Linear systems Hybrid systems Control systems

Dynamical systems

• Continuous-time systems modeled by ordinary differential
equations

ẋ(t) = f (x(t)) (x ∈ Rn)
• Initial-value problem: Given an initial state x0 ∈ Rn,

determine the solution/trajectory following f
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Simulation
• Traditionally we use simulations to understand such systems

Example: Harmonic oscillator

ẋ =


 0 1
−1 0


 x, x0 =


1

0
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Problems with simulation (1): Precision

• Approaches: reduce the time step, adaptive solvers, . . .
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Problems with simulation (2): Coverage

• Consider a set of initial states x1(0) ∈ [−1, 1]
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Problems with simulation (2): Coverage

• Approach: sample the corners (if the set has corners)
(sufficient for linear systems only)
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Problems with simulation (3): Dimensionality

• Sampling coverage is low for higher dimensions
• Vertex sampling: n-dimensional hyperrectangle has 2n vertices
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Reachability analysis

• Enclose the reachable states {x(t) : x(0) ∈ X0, t ≥ 0}
• Set-based simulations (same intuition)
• Rigorous proof method (captures all solutions)
• Fast (linear systems with thousands of dimensions)

6 / 25



Overview Nonlinear systems Linear systems Hybrid systems Control systems

Reachability analysis

• Enclose the reachable states {x(t) : x(0) ∈ X0, t ≥ 0}
• Set-based simulations (same intuition)
• Rigorous proof method (captures all solutions)
• Fast (linear systems with thousands of dimensions)

6 / 25



Overview Nonlinear systems Linear systems Hybrid systems Control systems

Safety verification

• Task: Verify that no trajectory leads to an error state

• Equivalent to showing Reach(I) ∩ A = ∅
• Only decidable under strong restrictions
• Showing R̂each(I) ∩ A = ∅

overapproximation of Reach(I)

is sufficient

R̂each(I)Reach(I)

t

x(t)

trajectories
initial states I

error states A
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JuliaReach1

• Open-source reachability toolbox
https://github.com/JuliaReach
• Joint work with Marcelo Forets and many others
• Won ARCH-COMP friendly competition 2018 and 2020

Linear systems (times in seconds)

tool BLDC01 CBF01 PLAD04-42 BRKDC01

dimension 48 200 9 4

CORA 2.9 30 1.4 12
HyDRA 0.426 − 1.83 −
JuliaReach 0.0096 12 0.031 0.82
SpaceEx 1.6 319 0.36 21

1S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.
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JuliaReach1

• Open-source reachability toolbox
https://github.com/JuliaReach
• Joint work with Marcelo Forets and many others
• Won ARCH-COMP friendly competition 2018 and 2020

Nonlinear systems (times in seconds)

tool CVDP20 LALO20-W0.1 LOVO21 SPRE21

dimension 4 7 2 4

Ariadne 11 31 8 −
CORA 7.7 38 23 26
DynIbex 510 1,851 75 144
JuliaReach 1.5 6.4 3.4 24

1S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.
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Examples

Van der Pol oscillator (limit cycle)
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Examples

Lorenz system (chaotic behavior)
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Examples

Quadrotor (robotics)
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Examples

Brusselator (chemical reaction)
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Examples

SEIR model (epidemiology)
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Reachability for nonlinear systems

• Reachtube construction computes a sequence of sets until
a time horizon
• Checking whether a state is reachable is undecidable

Hence the true reachable states are not computable
• Overapproximation or underapproximation
• Wrapping effect
• Alternative approaches: invariant generation, abstraction
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Taylor models
• Truncated polynomials with interval remainder
• Rigorous arithmetic

p1(x) = 1.7− 0.5x1 + 0.4x2 + 0.6x2
1 + [−0.001, 0.001]

p2(x) = 1.2 + 0.3x1 + 0.8x2 + 0.6x2
2 + [−0.001, 0.001]

x ∈ [−1, 1]2
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Taylor models for reachability

• Wrap in another Taylor model over time t
• Forward computation (here: two steps)
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Taylor models for reachability

• The first set (blue) in time interval [0, 0.225497]
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Linearization

• Carleman linearization turns a polynomial system into an
infinite-dimensional linear system
• Truncation leads to an approximate system
• Can bound the approximation error for dissipative,

weakly-nonlinear systems  reachability algorithm1

1M. Forets and C. Schilling. RP. 2021.
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Work in progress: Probabilistic initial conditions

Harmonic oscillator

X0 ∼ U(−1, 1) X0 ∼ U([−1, 0], [0, 1])

• Propagate p-boxes through Taylor models
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Linear systems

MNA5 (10,913 dimensions)

• Linear systems: ẋ(t) = Ax(t)
• Reachability problem still not decidable
• Arbitrary precision and fast (solution above: 90 sec)
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Time discretization

• Linear systems allow for wrapping-free algorithms based on
efficient set representations1

1M. Forets and C. Schilling. iFM. 2022.
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Wrapping-free computation

Harmonic oscillator after 500 periods
Time step: 0.01  314,160 steps
Computation time: 0.33 seconds
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Decomposition approach1,2

Standard algorithm

X (1) = Φ · X (0)
X (2) = Φ · X (1) = Φ2 · X (0)

x1

x2

X (0)

X (1)

X (2)

X̂1(1)

X̂2(1)

X̂1(0)

X̂2(0)
X̂ (0)

X̂ (1)

initial states I

1S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
2S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).
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Decomposition approach1,2

Decompose X (0) into low-dimensional sets X̂1(0) and X̂2(0)
(Note: In general, we do not need to go down to 1D)
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Hybrid and controlled systems
• Combine continuous and discrete behavior

Example: Thermostat controller

on
ẋ = 30 − x

x ≤ 23

off
ẋ = −x
x ≥ 17

x ≥ 22

x ≤ 18

t

x

20

18
17

22
23

t

on

off
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Reachability analysis for hybrid systems

Tool Presentation Althoff

Clearly, as for the continuous systems, the reachable set of the hybrid system has to be over-
approximated in order to verify the safety of the system. An illustration of a reachable set of
a hybrid automaton is given in Fig. 9.

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 9: Illustration of the reachable set of a hybrid automaton.

5.1 Hybrid Automaton

A hybrid automaton is implemented as a collection of locations. We mainly support the
following methods for hybrid automata:

• hybridAutomaton – constructor of the class.

• plot – plots the reachable set of the hybrid automaton.

• reach – computes the reachable set of the hybrid automaton.

• simulate – computes a hybrid trajectory of the hybrid automaton.

5.2 Location

Each location consists of:

• invariant – specified by a set representation of Sec. 2.

• transitions – cell array of objects of the class transition.

• contDynamics – specified by a continuous dynamics of Sec. 4.

• name – saved as a string describing the location.

• id – unique number of the location.

The supported methods of the location class are listed in Tab. 11.

5.3 Transition

Each transition consists of

• guard – specified by a set representation of Sec. 2.

• reset – struct containing the information for a linear reset.

144

picture taken from1

1M. Althoff. An Introduction to CORA 2015. ARCH. 2015.
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Decomposition approach1

Low-dimensional check

High-dimensional sets

• Check condition for discrete transition in low dimensions
• Only compute high-dimensional set when necessary
• Allows to analyze a 1027-dimensional model in 509 sec
1S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst. (2020).
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Periodic controllers with clock jitter
Electro-mechanical brake

İ = 1
L · (KP · xe + KI · xc) − I

L(R + K2
drot

)

ẋ = K
i ·drot

· I

ẋe = 0

ẋc = 0

ṫ = 1

t ≤ τ + ι

t ≥ τ − ι

x ′e := x0 − x

x ′c := xc + τ · (x0 − x)

t′ := t − τ

• Analysis for 1,001 transitions: 9 sec1 (previous work: 13 h)

1M. Forets, D. Freire, and C. Schilling. MEMOCODE. 2020.
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Neural-network controllers1

Plant
ẋ = f (x , u)

Sampler

Neural-network controller

clk
x(t) t = kτ

yk = x(kτ)

uk = N(yk)

1C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.
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Neural-network controllers1

1C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.
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Work in progress: Decision-tree controllers
Mountain car

v ≤ 0

left

true

right

false
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Summary

• Reachability analysis allows to reason about sets of
behaviors
• Mature for linear systems (thousands of dimensions within

seconds)
• Still hard for nonlinear and hybrid systems
• New challenges in systems with learned controllers
• Exploiting structure is key

• https://github.com/JuliaReach
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