A gentle introduction to reachability analysis for dynamical systems

Christian Schilling
Aalborg University, Denmark July 13, 2022

AALBORG UNIVERSITET

Dynamical systems

- Continuous-time systems modeled by ordinary differential equations

$$
\dot{x}(t)=f(x(t)) \quad\left(x \in \mathbb{R}^{n}\right)
$$

- Initial-value problem: Given an initial state $x_{0} \in \mathbb{R}^{n}$, determine the solution/trajectory following f

Simulation

- Traditionally we use simulations to understand such systems

Example: Harmonic oscillator

$$
\dot{x}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) x, \quad x_{0}=\binom{1}{0}
$$

Problems with simulation (1): Precision

- Approaches: reduce the time step, adaptive solvers, ...

Problems with simulation (2): Coverage

- Consider a set of initial states $x_{1}(0) \in[-1,1]$

Problems with simulation (2): Coverage

- Consider a set of initial states $x_{1}(0) \in[-1,1]$

Problems with simulation (2): Coverage

- Approach: sample the corners (if the set has corners) (sufficient for linear systems only)

Problems with simulation (3): Dimensionality

- Sampling coverage is low for higher dimensions
- Vertex sampling: n-dimensional hyperrectangle has 2^{n} vertices

Reachability analysis

- Enclose the reachable states $\left\{x(t): x(0) \in \mathcal{X}_{0}, t \geq 0\right\}$
- Set-based simulations (same intuition)
- Rigorous proof method (captures all solutions)
- Fast (linear systems with thousands of dimensions)

Reachability analysis

- Enclose the reachable states $\left\{x(t): x(0) \in \mathcal{X}_{0}, t \geq 0\right\}$
- Set-based simulations (same intuition)
- Rigorous proof method (captures all solutions)
- Fast (linear systems with thousands of dimensions)

Safety verification

- Task: Verify that no trajectory leads to an error state

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing $\operatorname{Reach}(\mathcal{I}) \cap$ 曷 $=\emptyset$
- Only decidable under strong restrictions

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing Reach(I) $\cap=\emptyset$
- Only decidable under strong restrictions
- Showing Reach $(\mathcal{I}) \cap=\emptyset$ is sufficient \uparrow
overapproximation of $\operatorname{Reach}(\mathcal{I})$

Safety verification

- Task: Verify that no trajectory leads to an error state
- Equivalent to showing Reach(I) $\cap=\emptyset$
- Only decidable under strong restrictions
- Showing Reach $(\mathcal{I}) \cap=\emptyset$ is sufficient \uparrow
overapproximation of $\operatorname{Reach}(\mathcal{I})$

restriction:
bounded time

JuliaReach ${ }^{1}$

- Open-source reachability toolbox https://github.com/JuliaReach
- Joint work with Marcelo Forets and many others
- Won ARCH-COMP friendly competition 2018 and 2020

Linear systems (times in seconds)

tool	BLDC01	CBF01	PLAD04-42	BRKDC01
dimension	48	200	9	4
CORA	2.9	30	1.4	12
HyDRA	0.426	-	1.83	-
JuliaReach	0.0096	12	0.031	0.82
SpaceEx	1.6	319	0.36	21

[^0]
JuliaReach ${ }^{1}$

- Open-source reachability toolbox https://github.com/JuliaReach
- Joint work with Marcelo Forets and many others
- Won ARCH-COMP friendly competition 2018 and 2020

Nonlinear systems (times in seconds)

tool	CVDP20	LALO20-W0.1	LOVO21	SPRE21
dimension	4	7	2	4
Ariadne	11	31	8	-
CORA	7.7	38	23	26
Dynlbex	510	1,851	75	144
JuliaReach	1.5	6.4	3.4	24

[^1]
Examples

Van der Pol oscillator (limit cycle)

Examples

Lorenz system (chaotic behavior)

Examples

Quadrotor (robotics)

Examples

Brusselator (chemical reaction)

Examples

SEIR model (epidemiology)

Reachability for nonlinear systems

- Reachtube construction computes a sequence of sets until a time horizon
- Checking whether a state is reachable is undecidable Hence the true reachable states are not computable
- Overapproximation or underapproximation
- Wrapping effect
- Alternative approaches: invariant generation, abstraction

Taylor models

- Truncated polynomials with interval remainder

- Rigorous arithmetic

$$
\begin{aligned}
p_{1}(x) & =1.7-0.5 x_{1}+0.4 x_{2}+0.6 x_{1}^{2}+[-0.001,0.001] \\
p_{2}(x) & =1.2+0.3 x_{1}+0.8 x_{2}+0.6 x_{2}^{2}+[-0.001,0.001] \\
x & \in[-1,1]^{2}
\end{aligned}
$$

Taylor models

- Truncated polynomials with interval remainder

- Rigorous arithmetic

$$
\begin{aligned}
p_{1}(x) & =1.7-0.5 x_{1}+0.4 x_{2}+0.6 x_{1}^{2}+[-0.001,0.001] \\
p_{2}(x) & =1.2+0.3 x_{1}+0.8 x_{2}+0.6 x_{2}^{2}+[-0.001,0.001] \\
x & \in[-1,1]^{2}
\end{aligned}
$$

Taylor models for reachability

- Wrap in another Taylor model over time t
- Forward computation (here: two steps)

Taylor models for reachability


```
-0.85 + 0.25 \mp@subsup{x}{1}{}-0.2 \mp@subsup{x}{2}{}-0.3 \mp@subsup{x}{1}{}\mp@subsup{}{}{2}) t}\mp@subsup{t}{}{2}+(-0.199999999999999988
0.0499999999999999996 }\mp@subsup{x}{1}{}-0.13333333333333333 \mp@subsup{x}{2}{}-0.099999999999999999 \mp@subsup{x}{2}{}\mp@subsup{}{}{2}
t}\mp@subsup{}{}{3}+(0.07083333333333333-0.020833333333333332 x ( + 0.016666666666666666
```



```
0.0024999999999999996 }\mp@subsup{x}{1}{}+0.006666666666666666 \mp@subsup{x}{2}{}+0.004999999999999999
\mp@subsup{x}{2}{}\mp@subsup{}{}{2}) t}\mp@subsup{}{}{5}+(-0.0023611111111111111+0.00069444444444444445 \mp@subsup{x}{1}{}
0.00055555555555555556 \mp@subsup{x}{2}{}-0.0008333333333333332 x x1 }\mp@subsup{}{}{2})\mp@subsup{t}{}{0}+(
0.00023809523809523804-5.952380952380951e-5 x ( - 0.00015873015873015873
x
1.240079365079365e-5 \mp@subsup{x}{1}{}+9.92063492063492e-6 \mp@subsup{x}{2}{}+1.4880952380952378e-5
x1 ') t' }\mp@subsup{}{}{8}+[-1.00001e-10, 1.00001e-10]
1.2+0.3 \mp@subsup{x}{1}{}+0.8 \mp@subsup{x}{2}{}+0.6 \mp@subsup{x}{2}{2}+(-1.7+0.5 ( 
( - 0.6 - 0. 15 x x - 0.4 x < - 0.3 x ( }\mp@subsup{}{2}{2})\mp@subsup{t}{}{2}+(0.2833333333333333 -
0.08333333333333333 \mp@subsup{x}{1}{}+0.06666666666666667 \mp@subsup{x}{2}{}+0.099999999999999999 \mp@subsup{x}{1}{}\mp@subsup{}{}{2})
t}\mp@subsup{}{}{3}+(0.049999999999999996 +0.0124999999999999999 午 + 0.03333333333333333
\mp@subsup{x}{2}{}+0.024999999999999998 }\mp@subsup{x}{2}{2})\mp@subsup{t}{}{4}+(-0.014166666666666666 +
0.004166666666666667 \mp@subsup{x}{1}{}-0.003333333333333333 x ( - 0.0049999999999999999
\mp@subsup{x}{1}{}\mp@subsup{}{}{2}) t}\mp@subsup{}{}{5}+(-0.0016666666666666663-0.0004166666666666666 ( x ( -
0.00111111111111111111 }\mp@subsup{x}{2}{}-0.0008333333333333332 \mp@subsup{x}{2}{}\mp@subsup{}{}{2})\mp@subsup{t}{}{6}+
0.00033730158730158733-9.92063492063492e-5 \mp@subsup{x}{1}{}+7.936507936507937e-5 x x +
0.00011904761904761902 \mp@subsup{x}{1}{2}}\mp@subsup{}{}{2})\mp@subsup{\textrm{t}}{}{7}+(2.9761904761904755e-5 
7.440476190476189e-6 \mp@subsup{x}{1}{}+1.984126984126984e-5 \mp@subsup{x}{2}{}+1.4880952380952378e-5
x}\mp@subsup{2}{}{2})\mp@subsup{t}{}{8}+[-1.00001e-10, 1.00001e-10
```

- The first set (blue) in time interval [0, 0.225497]

Linearization

- Carleman linearization turns a polynomial system into an infinite-dimensional linear system
- Truncation leads to an approximate system
- Can bound the approximation error for dissipative, weakly-nonlinear systems \rightsquigarrow reachability algorithm ${ }^{1}$

[^2]
Work in progress: Probabilistic initial conditions

Harmonic oscillator

$$
\mathcal{X}_{0} \sim U(-1,1)
$$

$\mathcal{X}_{0} \sim U([-1,0],[0,1])$

- Propagate p-boxes through Taylor models

Linear systems

- Linear systems: $\dot{x}(t)=A x(t)$
- Reachability problem still not decidable
- Arbitrary precision and fast (solution above: 90 sec)

Time discretization

- Linear systems allow for wrapping-free algorithms based on efficient set representations ${ }^{1}$
${ }^{1}$ M. Forets and C. Schilling. iFM. 2022.

Time discretization

- Linear systems allow for wrapping-free algorithms based on efficient set representations ${ }^{1}$
${ }^{1}$ M. Forets and C. Schilling. iFM. 2022.

Time discretization

- Linear systems allow for wrapping-free algorithms based on efficient set representations ${ }^{1}$
${ }^{1}$ M. Forets and C. Schilling. iFM. 2022.

Wrapping-free computation

Harmonic oscillator after 500 periods
Time step: $0.01 \rightsquigarrow 314,160$ steps
Computation time: 0.33 seconds

Decomposition approach ${ }^{1,2}$

Standard algorithm

[^3]
Decomposition approach ${ }^{1,2}$

Standard algorithm

[^4]
Decomposition approach ${ }^{1,2}$

Standard algorithm

$$
\mathcal{X}(1)=\Phi \cdot \mathcal{X}(0)
$$

[^5]Decomposition approach ${ }^{1,2}$

Standard algorithm

$$
\begin{aligned}
& \mathcal{X}(1)=\Phi \cdot \mathcal{X}(0) \\
& \mathcal{X}(2)=\Phi \cdot \mathcal{X}(1)=\Phi^{2} \cdot \mathcal{X}(0) \\
& \mathcal{X}(2) \xrightarrow{x_{2}}(1)
\end{aligned}
$$

[^6]
Decomposition approach ${ }^{1,2}$

[^7]Decomposition approach ${ }^{1,2}$ Decompose $\mathcal{X}(0)$ into low-dimensional sets $\widehat{\mathcal{X}}_{1}(0)$ and $\widehat{\mathcal{X}}_{2}(0)$ (Note: In general, we do not need to go down to 1D)

[^8]
Decomposition approach ${ }^{1,2}$

 Define $\widehat{\mathcal{X}}(k):=\widehat{\mathcal{X}}_{1}(k) \times \widehat{\mathcal{X}}_{2}(k)$

[^9]
Decomposition approach ${ }^{1,2}$

Define $\widehat{\mathcal{X}}(k):=\widehat{\mathcal{X}}_{1}(k) \times \widehat{\mathcal{X}}_{2}(k)$
Standard: $\quad \mathcal{X}(k)=\phi^{k} \cdot \mathcal{X}(0)$

[^10]Decomposition approach ${ }^{1,2}$
Define $\widehat{\mathcal{X}}(k):=\widehat{\mathcal{X}}_{1}(k) \times \widehat{\mathcal{X}}_{2}(k)$
Standard: $\quad \mathcal{X}(k)=$
$\phi^{k} \cdot \mathcal{X}(0)$
Decomposed: $\widehat{\mathcal{X}}(k)=\phi^{k} \cdot \widehat{\mathcal{X}}(0)$?

[^11]
Decomposition approach ${ }^{1,2}$

Define $\widehat{\mathcal{X}}(k):=\widehat{\mathcal{X}}_{1}(k) \times \widehat{\mathcal{X}}_{2}(k)$
Standard: $\quad \mathcal{X}(k)=\Phi^{k} \cdot \mathcal{X}(0)$
Decomposed: $\widehat{\mathcal{X}}_{i}(k)=\oplus_{j} \Phi_{i, j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0)$

[^12]Decomposition approach ${ }^{1,2}$

$$
\widehat{\mathcal{X}}_{i}(k)=\oplus_{j} \Phi_{i, j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \quad \Phi=\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)
$$

[^13]Decomposition approach ${ }^{1,2}$

$$
\begin{array}{ll|l|l}
\widehat{\mathcal{X}}_{i}(k)=\oplus_{j} \Phi_{i, j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) & \Phi=\left(\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right)
\end{array}
$$

[^14]Decomposition approach ${ }^{1,2}$

$$
\left.\begin{array}{ll|l}
\widehat{\mathcal{X}}_{i}(k)=\oplus_{j} \Phi_{i, j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) & \Phi=\left(\begin{array}{l|l}
A & B \\
\hline & \widehat{\mathcal{X}}_{1}(1)=A \cdot \widehat{\mathcal{X}}_{1}(0) \oplus B \cdot \widehat{\mathcal{X}}_{2}(0)
\end{array}\right. & D
\end{array}\right)
$$

[^15]
Decomposition approach ${ }^{1,2}$

${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

Decomposition approach ${ }^{1,2}$

[^16]${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

Decomposition approach ${ }^{1,2}$

[^17]
Hybrid and controlled systems

- Combine continuous and discrete behavior

Example: Thermostat controller

Reachability analysis for hybrid systems

Decomposition approach ${ }^{1}$
 Low-dimensional check

High-dimensional sets

- Check condition for discrete transition in low dimensions
- Only compute high-dimensional set when necessary
- Allows to analyze a 1027-dimensional model in 509 sec

[^18]
Periodic controllers with clock jitter

Electro-mechanical brake

$$
\begin{aligned}
\dot{I} & =\frac{1}{L} \cdot\left(K_{P} \cdot x_{e}+K_{l} \cdot x_{c}\right)-\frac{1}{L}\left(R+\frac{K^{2}}{d_{r o t}}\right) \\
\dot{x} & =\frac{K}{i \cdot d_{r o t}} \cdot l \\
\dot{x}_{e} & =0 \\
\dot{x}_{c} & =0 \\
\dot{t} & =1
\end{aligned}
$$

$$
t \geq \tau-\iota
$$

$$
x_{e}^{\prime}:=x_{0}-x
$$

$$
x_{c}^{\prime}:=x_{c}+\tau \cdot\left(x_{0}-x\right)
$$

$$
t^{\prime}:=t-\tau
$$

$$
t \leq \tau+\iota
$$

- Analysis for $\mathbf{1 , 0 0 1}$ transitions: 9 sec $^{\mathbf{1}}$ (previous work: 13 h)

Neural-network controllers ${ }^{1}$

${ }^{1}$ C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.

Neural-network controllers ${ }^{1}$

${ }^{1}$ C. Schilling, M. Forets, and S. Guadalupe. AAAI. 2022.

Work in progress: Decision-tree controllers

Mountain car

Summary

- Reachability analysis allows to reason about sets of behaviors
- Mature for linear systems (thousands of dimensions within seconds)
- Still hard for nonlinear and hybrid systems
- New challenges in systems with learned controllers
- Exploiting structure is key
- https://github.com/JuliaReach

[^0]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.

[^1]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. HSCC. 2019.

[^2]: ${ }^{1}$ M. Forets and C. Schilling. RP. 2021.

[^3]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^4]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^5]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^6]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^7]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^8]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^9]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^10]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^11]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^12]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^13]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^14]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^15]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^16]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.

[^17]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. HSCC. 2018.
 ${ }^{2}$ S. Bogomolov, M. Forets, G. Frehse, A. Podelski, and C. Schilling. Inf. Comput. (2022).

[^18]: ${ }^{1}$ S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020).

