Automatic Symbolic Analysis of Quantum Programs

Christian Schilling

christianms@cs.aau.dk

August 23, 2023

Background

Symbolic encoding

Evaluation

Conclusion and demo

Acknowledgments

Joint work¹ with Fabian Bauer-Marquart and Stefan Leue

¹F. Bauer-Marquart, S. Leue, and C. Schilling. *Formal Methods*. 2023.

Background

Symbolic encoding

Evaluation

Conclusion and demo

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Background

Symbolic encoding

Evaluation

Conclusion and demo

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Symbolic encoding

Evaluation

Conclusion and demo

Motivation

• Some interesting problems for quantum programs

- Correctness analysis
- Program equivalence
- Repair of errors and program synthesis
- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Background

Symbolic encoding

Evaluation

Conclusion and demo

Motivation

- Some interesting problems for quantum programs
 - Correctness analysis (focus in this presentation)
 - **Program equivalence** (← focus in this presentation)
 - Repair of errors and program synthesis
 - Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Symbolic encoding

Evaluation

Conclusion and demo

Correctness analysis for classical programs

- · Verification of classical programs is well studied
 - Given are a program and a specification
 - Decide whether specification holds

```
int f91(int x) {
                                    f91(x) = \begin{cases} x - 10 & x > 100\\ 91 & \text{otherwise} \end{cases}
   if (x > 100)
       return x - 10:
   else
       return f91(f91(x + 11)):
}
int main() {
    int x = user_input();
    int res = f91(x);
   assert (x > 100 && res == x - 10) || res == 91
}
```

Symbolic encoding

Evaluation

Conclusion and demo

Correctness analysis for quantum programs

- This presentation
 - Verification against specifications in first-order logic
 - Reduction to an automatic solution technique
 - Efficient encoding and overapproximation

Symbolic encoding

Evaluation

Conclusion and demo

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Background

Symbolic encoding

Evaluation

Conclusion and demo

Qubit

- Ground state $|0\rangle$
- Excited state |1
 angle
- Superposition $|q\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$
- Written as 2D vector: $|q\rangle \equiv \begin{vmatrix} \alpha \\ \beta \end{vmatrix}$
- Constraint $|\alpha|^2 + |\beta|^2 = 1$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Bloch sphere

• Polar coordinates: $|q\rangle = \underbrace{\cos{\frac{\theta}{2}}}_{\alpha}|0\rangle + \underbrace{e^{i\phi}\sin{\frac{\theta}{2}}}_{\beta}|1\rangle$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Multiple qubits (unentangled)

$$\begin{aligned} |q_{0}, q_{1}\rangle &= |q_{0}\rangle \otimes |q_{1}\rangle \equiv \begin{bmatrix} \alpha_{0} \\ \beta_{0} \end{bmatrix} \otimes \begin{bmatrix} \alpha_{1} \\ \beta_{1} \end{bmatrix} \\ &= \alpha_{0}\alpha_{1} |00\rangle + \alpha_{0}\beta_{1} |01\rangle + \beta_{0}\alpha_{1} |10\rangle + \beta_{0}\beta_{1} |11\rangle \\ &\equiv \begin{bmatrix} \alpha_{0}\alpha_{1} \\ \alpha_{0}\beta_{1} \\ \beta_{0}\alpha_{1} \\ \beta_{0}\beta_{1} \end{bmatrix} \end{aligned}$$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Quantum gates

- Unitary matrix operations
- Example: swapping of two qubits

$$SW\!AP(|q_0, q_1\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \alpha_1 \\ \beta_0 \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \alpha_1 \\ \beta_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \beta_1 \end{bmatrix} = |q_1, q_0\rangle$$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Another quantum gate: Controlled NOT

$$CNOT(|q_0, q_1\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \alpha_1 \\ \beta_0 \beta_1 \end{bmatrix} = \begin{bmatrix} \alpha_0 \alpha_1 \\ \alpha_0 \beta_1 \\ \beta_0 \beta_1 \\ \beta_0 \alpha_1 \end{bmatrix}$$
$$= |q_0, q_0 \oplus q_1\rangle$$

where \oplus is addition modulo 2 ("XOR")

Background

Symbolic encoding

Evaluation

Conclusion and demo

Measurement

- "Converts" to basis state ($|0\rangle$ or $|1\rangle$)
- Not invertible

$$|q\rangle \equiv \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \xrightarrow{} x \xrightarrow{} x$$

 $x = \begin{cases} |0\rangle & \text{with probability } |\alpha|^2 \\ |1\rangle & \text{with probability } |\beta|^2 \end{cases}$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Are these two quantum programs equivalent?

Conclusion and demo

- Idea: pick an initial state and execute both programs
 - One-way: disagreement implies different programs

Background

Symbolic encoding

Evaluation

Conclusion and demo

Black-box equivalence check

- One-way: disagreement implies different programs
- Cannot obtain exact quantum state

Background

Symbolic encoding

Evaluation

Conclusion and demo

Black-box equivalence check

- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
 - Measurement only yields a basis state

Background

Symbolic encoding

Evaluation

Conclusion and demo

Black-box equivalence check

- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
 - Measurement only yields a basis state
 - Disagreement does **not** imply different programs

Background

Symbolic encoding

Evaluation

Conclusion and demo

Black-box equivalence check

- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
 - Measurement only yields a basis state
 - Disagreement does **not** imply different programs
 - Approximation by executing many times
 - Expensive and no guarantee

Background

Symbolic encoding

Evaluation

Conclusion and demo

Black-box equivalence check

- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
 - Measurement only yields a basis state
 - Disagreement does **not** imply different programs
 - Approximation by executing many times
 - Expensive and no guarantee
- Only checked for some quantum state
 - Uncountably many quantum states to test with

Background

Symbolic encoding

Evaluation

Conclusion and demo

White-box equivalence check: Matrix representation

Background

Symbolic encoding

Evaluation

Conclusion and demo

White-box equivalence check: Matrix representation

Matrices are exponentially large (n qubits → 2ⁿ × 2ⁿ)

Background

Symbolic encoding

Evaluation

Conclusion and demo

Computability

- Quantum computers and classical computers can solve the same problems
 - May be surprising because quantum gates are reversible
 - Simulation on quantum computer requires "garbage qubits"
 - Simulation on classical computer just multiplies matrices
- Advantage only comes in terms of complexity

Background

Symbolic encoding

Evaluation

Conclusion and demo

Complexity

- **P** = deterministic polynomial time
- **BPP** = bounded-error probabilistic polynomial time (error < 1/3)
- **BQP** = bounded-error quantum polynomial time (error < 1/3)
- **PP** = probabilistic polynomial time (error < 1/2)
- **NP** = nondeterministic polynomial time
- **PSPACE** = polynomial space

known:

Background

Symbolic encoding

Evaluation

Conclusion and demo

Complexity of simulating a quantum program

- Non-entangled qubits: only 2×2 matrices
- Clifford gates (Hadamard, CNOT, phase gate S) can be simulated in polynomial time¹

- Generally, error-bounded probabilistic simulation of n qubits and m gates is possible with $O(2^n m^3)$ classical gates²
- Simulation is BQP-complete
- Corollary: Simulation only requires polynomial space (follows from BQP ⊆ PSPACE)

¹D. Gottesman. PhD thesis. 1997

²R. Cleve. *Quantum Computation and Quantum Information Theory*. 2000.

Background

Symbolic encoding

Evaluation

Conclusion and demo

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Symbolic encoding

Evaluation

Conclusion and demo

Toward a concise representation of quantum programs

• Intuitive explanation for the following equivalence?

Symbolic encoding

Evaluation

Conclusion and demo

Toward a concise representation of quantum programs

• Intuitive explanation for the following equivalence?

$$SWAP(SWAP(|q_0, q_1\rangle)) = SWAP(|q_1, q_0\rangle) = |q_0, q_1\rangle$$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Symbolic encoding of quantum programs

- Idea: use a symbolic (= logic) encoding
- Sketched for the main components

Background

Symbolic encoding

Evaluation

Conclusion and demo

Qubit encoding

•
$$|q\rangle = \alpha |0\rangle + \beta |1\rangle$$

•
$$|\alpha|^2 + |\beta|^2 = 1$$
 ?

Background

Symbolic encoding

Evaluation

Conclusion and demo

Qubit encoding

•
$$|q\rangle = \alpha |0\rangle + \beta |1\rangle$$

- $|\alpha|^2 + |\beta|^2 = 1 \leftarrow \text{expensive}$
- Instead use polar coordinates:

$$|q
angle = \underbrace{\cosrac{ heta}{2}}_{lpha} |0
angle + \underbrace{e^{i\phi}\sinrac{ heta}{2}}_{eta} |1
angle$$

Background

 $\stackrel{z}{\uparrow} |0\rangle$

 $|1\rangle$

 $|-\rangle |q\rangle$

Symbolic encoding

Evaluation

Conclusion and demo

Qubit encoding

•
$$|q\rangle = \alpha |0\rangle + \beta |1\rangle$$

- $|\alpha|^2 + |\beta|^2 = 1 \leftarrow \text{expensive}$
- Instead use polar coordinates:

- Encode a qubit |q
 angle as a 5-tuple $(lpha,eta_{\sf R},eta_{\sf I},\phi, heta)\in\mathbb{R}^5$
- Add constraints for values

•
$$\alpha = \cos \frac{\theta}{2} \wedge \beta_R = \cos \phi \cdot \sin \frac{\theta}{2} \wedge \beta_I = \sin \phi \cdot \sin \frac{\theta}{2}$$

•
$$0 \le \theta \le \pi$$
 \land $0 \le \phi < 2\pi$

 $|i\rangle$

• $\theta = 0 \implies \phi = 0 \land \theta = \pi \implies \phi = 0$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
 - $I(|q_0
 angle) = |q_0
 angle$
 - $X(\alpha |0\rangle + \beta |1\rangle) = \beta |0\rangle + \alpha |1\rangle$
 - $H(\alpha |0\rangle + \beta |1\rangle) = \frac{1}{\sqrt{2}}(\alpha + \beta) |0\rangle + \frac{1}{\sqrt{2}}(\alpha \beta) |1\rangle)$
 - SWAP $(|q_0,q_1
 angle) = |q_1,q_0
 angle$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
 - $I(|q_0
 angle) = |q_0
 angle$
 - $X(\alpha |0\rangle + \beta |1\rangle) = \beta |0\rangle + \alpha |1\rangle$
 - $H(\alpha |0\rangle + \beta |1\rangle) = \frac{1}{\sqrt{2}}(\alpha + \beta) |0\rangle + \frac{1}{\sqrt{2}}(\alpha \beta) |1\rangle)$
 - SWAP $(|q_0,q_1
 angle) = |q_1,q_0
 angle$
 - $CNOT(|q_0,q_1\rangle)$?

Background

Symbolic encoding

Evaluation

Conclusion and demo

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
 - $I(|q_0
 angle) = |q_0
 angle$
 - $X(\alpha |0\rangle + \beta |1\rangle) = \beta |0\rangle + \alpha |1\rangle$
 - $H(\alpha |0\rangle + \beta |1\rangle) = \frac{1}{\sqrt{2}}(\alpha + \beta) |0\rangle + \frac{1}{\sqrt{2}}(\alpha \beta) |1\rangle)$
 - SWAP $(|q_0,q_1
 angle) = |q_1,q_0
 angle$
 - $CNOT(|q_0,q_1\rangle)$?
- In general, we need an exponential representation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Measurement encoding

- Typically last operation
- Can be skipped with symbolic analysis
- Just a projection

Evaluation

Conclusion and demo

Soundness and completeness

Theorem

The quantum program model (= our encoding) preserves the semantics of the quantum circuit model (= standard model)

Corollary

Given a quantum program model with encoding \mathcal{E} and a specification φ , the program satisfies φ if and only if $\mathcal{E} \land \neg \varphi$ is **unsatisfiable**

- ${\ensuremath{\mathcal E}}$ is a formula containing nonlinear real arithmetic with trigonometric expressions
- Undecidable but δ -decidable¹
 - Implies that answer "unsatisfiable" is correct

¹S. Gao, J. Avigad, and E. M. Clarke. *IJCAR*. 2012.

Background

Symbolic encoding

Evaluation

Conclusion and demo

Example: Grover's diffusion operator

Background

Symbolic encoding

Evaluation

Conclusion and demo

Example: Grover's diffusion operator

Specification:

• Each qubit with non-positive phase (α_i) reduces the phase

```
conjunction = []
for i in range(n):
    conjunction.append(Implies(
        initial_state[i].r <= 0,
        final_state[i].r <= initial_state[i].r))</pre>
```

Background

Symbolic encoding

Evaluation

Conclusion and demo

Recall: Qubit encoding

- Encode a qubit |q
 angle as a 5-tuple $(lpha, eta_{R}, eta_{I}, \phi, heta) \in \mathbb{R}^{5}$
- Add constraints for values

•
$$\alpha = \cos \frac{\theta}{2} \wedge \beta_R = \cos \phi \cdot \sin \frac{\theta}{2} \wedge \beta_I = \sin \phi \cdot \sin \frac{\theta}{2}$$

•
$$0 \le \theta \le \pi$$
 \land $0 \le \phi < 2\pi$

• $\theta = 0 \implies \phi = 0 \land \theta = \pi \implies \phi = 0$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Overapproximation

- Exact initial-state constraints generally not needed
- Positive verification result for supersets sufficient

 $-1 \leq \alpha \leq 1 \quad \wedge \quad -1 \leq \beta_{\textit{R}} \leq 1 \quad \wedge \quad -1 \leq \beta_{\textit{I}} \leq 1$

Evaluation

Conclusion and demo

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

• Repair of errors and program synthesis

Background

Symbolic encoding

Evaluation

Conclusion and demo

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$\forall x : \mathcal{E}_1(x) = \mathcal{E}_2(x)$$

• Repair of errors and program synthesis

Background

Symbolic encoding

Evaluation

Conclusion and demo

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$\forall x : \mathcal{E}_1(x) = \mathcal{E}_2(x)$$

• Repair of errors and program synthesis

$$\exists G_1, \ldots, G_n : \mathsf{circuit}(G_1 \ldots G_n) \models \varphi$$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$\forall x : \mathcal{E}_1(x) = \mathcal{E}_2(x)$$

• Repair of errors and program synthesis

$$\exists G_1, \ldots, G_n : \mathsf{circuit}(G_1 \ldots G_n) \models \varphi$$

$$\exists G_1, \ldots, G_n : \mathsf{circuit}(G_1 \ldots G_n) \equiv \mathcal{E}$$

Background

Symbolic encoding

Evaluation

Conclusion and demo

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Background

Symbolic encoding

Evaluation

Conclusion and demo

Benchmark problems

Program	Description	Depth	Input	
Toffoli	Toffoli gate	5	bit vector	
ТР	Quantum teleportation	6	infinite	
ADD-8	8-qubit quantum adder	48	bit vector	
QFT-n	<i>n</i> -qubit quantum Fourier transform	$\mathcal{O}(n^2)$	bit vector	
QPE-n	<i>n</i> -qubit quantum phase estimation	$\mathcal{O}(n^2)$	$singleton^1$	
GDO-n	<i>n</i> -qubit Grover's diffusion operator	$\mathcal{O}(n)$	infinite	

¹Parameterized gates

Background

Symbolic encoding

Evaluation

Conclusion and demo

Algorithms

- Simulation on a classical computer
- Matrix: Encoding with (exponential) matrix/vector representation
- **Mapping**: Encoding with gate mapping but without overapproximation
- Approx: Encoding with gate mapping and overapproximation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Benchmark results

Benchmark	Simulation	Matrix	Mapping	Approx	
Toffoli	0.02 sec	11.1 sec	1.3 sec	0.4 sec	
ТР	N/A	44.8 sec	21.6 sec	31.0 sec	
ADD-8	6.1 h	MOO	7.6 sec	7.8 sec	
QFT-3	0.005 sec	12.8 sec	5.8 sec	1.0 sec	
QFT-5	0.03 sec	17.6 min	2.6 min	26.4 sec	
QFT-10	1.5 sec	1.2 h	10.9 h	1.6 h	
QFT-12	14.0 sec	4.0 h	timeout	7.4 h	

Evaluation

Conclusion and demo

Benchmark results

Benchmark	Simulation	Matrix	Mapping	Approx
QPE-3	N/A	19.2 sec	34.0 sec	8.7 sec
QPE-5	N/A	18.2 min	42.3 min	3.9 min
GDO-5	N/A	timeout	9.2 sec	1.3 sec
GDO-10	N/A	timeout	3.2 min	17.0 sec
GDO-12	N/A	timeout	14.2 min	20.2 sec
GDO-15	N/A	timeout	2.9 h	1.0 min
GDO-18	N/A	timeout	timeout	4.9 min
GDO-20	N/A	timeout	timeout	17.1 min
GDO-22	N/A	timeout	timeout	1.1 h
GDO-24	N/A	timeout	timeout	4.2 h

Background

Symbolic encoding

Evaluation

Conclusion and demo ●○○

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Evaluation

Conclusion and demo ○●○

Conclusion and future work

- Symbolic encoding of quantum programs
- Fully automatic verification via δ -satisfiability
- Symbolic encoding can sometimes avoid exponential blow-up
- Simple overapproximation sometimes useful in practice
- Future directions:
 - Other approximation techniques
 - Falsification and approximation refinement

Background

Symbolic encoding

Evaluation

Conclusion and demo ○○●

Demo

- Tool available at https://github.com/schillic/symQV
- Toffoli gate / CCNOT: $|q_0,q_1,q_2
 angle\mapsto |q_0,q_1,q_0q_1\oplus q_2
 angle$
- Universal gate for classical circuits

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1 0	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0

Evaluation

Conclusion and demo ○○●

Demo

- Tool available at https://github.com/schillic/symQV
- Toffoli gate / CCNOT: $|q_0,q_1,q_2
 angle\mapsto |q_0,q_1,q_0q_1\oplus q_2
 angle$
- Universal gate for classical circuits

