Automatic Symbolic Analysis of Quantum Programs

Christian Schilling christianms@cs.aau.dk

August 23, 2023

Acknowledgments

Joint work ${ }^{1}$ with Fabian Bauer-Marquart and Stefan Leue

${ }^{1}$ F. Bauer-Marquart, S. Leue, and C. Schilling. Formal Methods. 2023.

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Motivation

- Some interesting problems for quantum programs
- Correctness analysis
- Program equivalence
- Repair of errors and program synthesis
- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Motivation

- Some interesting problems for quantum programs
- Correctness analysis (\leftarrow focus in this presentation)
- Program equivalence (\leftarrow focus in this presentation)
- Repair of errors and program synthesis
- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Correctness analysis for classical programs

- Verification of classical programs is well studied
- Given are a program and a specification
- Decide whether specification holds

```
int f91(int x) {
    if (x > 100)
        return x - 10;
        f91(x)={lll}\begin{array}{ll}{x-10}&{x>100}\\{91}&{\mathrm{ otherwise }}
    else
        return f91(f91(x + 11));
}
int main() {
    int x = user_input();
    int res = f91(x);
    assert (x > 100 && res == x - 10) || res == 91
}
```


Correctness analysis for quantum programs

- This presentation
- Verification against specifications in first-order logic
- Reduction to an automatic solution technique
- Efficient encoding and overapproximation

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Qubit

- Ground state $|0\rangle$
- Excited state $|1\rangle$
- Superposition $|q\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}$
- Written as 2D vector: $|\boldsymbol{q}\rangle \equiv\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$
- Constraint $|\alpha|^{2}+|\beta|^{2}=1$

Bloch sphere

- Polar coordinates: $|q\rangle=\underbrace{\cos \frac{\theta}{2}}_{\alpha}|0\rangle+\underbrace{e^{i \phi} \sin \frac{\theta}{2}}_{\beta}|1\rangle$

Multiple qubits (unentangled)

$$
\begin{aligned}
\left|q_{0}, q_{1}\right\rangle & =\left|q_{0}\right\rangle \otimes\left|q_{1}\right\rangle \equiv\left[\begin{array}{l}
\alpha_{0} \\
\beta_{0}
\end{array}\right] \otimes\left[\begin{array}{l}
\alpha_{1} \\
\beta_{1}
\end{array}\right] \\
& =\alpha_{0} \alpha_{1}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\beta_{0} \alpha_{1}|10\rangle+\beta_{0} \beta_{1}|11\rangle \\
& \equiv\left[\begin{array}{l}
\alpha_{0} \alpha_{1} \\
\alpha_{0} \beta_{1} \\
\beta_{0} \alpha_{1} \\
\beta_{0} \beta_{1}
\end{array}\right]
\end{aligned}
$$

Quantum gates

- Unitary matrix operations
- Example: swapping of two qubits

$\operatorname{SWAP}\left(\left|q_{0}, q_{1}\right\rangle\right)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{0} \alpha_{1} \\ \alpha_{0} \beta_{1} \\ \beta_{0} \alpha_{1} \\ \beta_{0} \beta_{1}\end{array}\right]=\left[\begin{array}{l}\alpha_{0} \alpha_{1} \\ \beta_{0} \alpha_{1} \\ \alpha_{0} \beta_{1} \\ \beta_{0} \beta_{1}\end{array}\right]=\left|q_{1}, \boldsymbol{q}_{0}\right\rangle$

Another quantum gate: Controlled NOT

$$
\begin{aligned}
\operatorname{CNOT}\left(\left|q_{0}, q_{1}\right\rangle\right) & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\alpha_{0} \alpha_{1} \\
\alpha_{0} \beta_{1} \\
\beta_{0} \alpha_{1} \\
\beta_{0} \beta_{1}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{0} \alpha_{1} \\
\alpha_{0} \beta_{1} \\
\beta_{0} \beta_{1} \\
\beta_{0} \alpha_{1}
\end{array}\right] \\
& =\left|q_{0}, q_{0} \oplus \boldsymbol{q}_{1}\right\rangle
\end{aligned}
$$

where \oplus is addition modulo 2 ("XOR")

Measurement

- "Converts" to basis state (|0〉 or $|1\rangle$)
- Not invertible

$$
\begin{aligned}
|q\rangle & \equiv\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \rightarrow x \\
x & = \begin{cases}|0\rangle & \text { with probability }|\alpha|^{2} \\
|1\rangle & \text { with probability }|\beta|^{2}\end{cases}
\end{aligned}
$$

Are these two quantum programs equivalent?

Black-box equivalence check

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs

Black-box equivalence check

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs
- Cannot obtain exact quantum state

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
- Measurement only yields a basis state

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
- Measurement only yields a basis state
- Disagreement does not imply different programs

Black-box equivalence check

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
- Measurement only yields a basis state
- Disagreement does not imply different programs
- Approximation by executing many times
- Expensive and no guarantee

Black-box equivalence check

- Idea: pick an initial state and execute both programs
- One-way: disagreement implies different programs
- Cannot obtain exact quantum state
- Measurement only yields a basis state
- Disagreement does not imply different programs
- Approximation by executing many times
- Expensive and no guarantee
- Only checked for some quantum state
- Uncountably many quantum states to test with

White-box equivalence check: Matrix representation

White-box equivalence check: Matrix representation

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Matrices are exponentially large (n qubits $\rightsquigarrow 2^{n} \times 2^{n}$)

Computability

- Quantum computers and classical computers can solve the same problems
- May be surprising because quantum gates are reversible
- Simulation on quantum computer requires "garbage qubits"
- Simulation on classical computer just multiplies matrices
- Advantage only comes in terms of complexity

Complexity

- $\mathbf{P}=$ deterministic polynomial time
- $\mathbf{B P P}=$ bounded-error probabilistic polynomial time (error $<1 / 3$)
- $B Q P=$ bounded-error quantum polynomial time (error $<1 / 3$)
known:

- $\mathbf{P P}=$ probabilistic polynomial time (error $<1 / 2$)
- $\mathbf{N P}=$ nondeterministic polynomial time
- PSPACE $=$ polynomial space

Complexity of simulating a quantum program

- Non-entangled qubits: only 2×2 matrices
- Clifford gates (Hadamard, CNOT, phase gate S) can be simulated in polynomial time ${ }^{1}$

- Generally, error-bounded probabilistic simulation of n qubits and m gates is possible with $\mathcal{O}\left(2^{n} m^{3}\right)$ classical gates ${ }^{2}$
- Simulation is BQP-complete
- Corollary: Simulation only requires polynomial space (follows from BQP \subseteq PSPACE)

[^0]
Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Toward a concise representation of quantum programs

- Intuitive explanation for the following equivalence?

Toward a concise representation of quantum programs

- Intuitive explanation for the following equivalence?

$$
\begin{aligned}
& \operatorname{SWAP}\left(\operatorname{SWAP}\left(\left|q_{0}, q_{1}\right\rangle\right)\right) \\
= & \operatorname{SWAP}\left(\left|q_{1}, q_{0}\right\rangle\right) \\
= & \left|q_{0}, q_{1}\right\rangle
\end{aligned}
$$

Symbolic encoding of quantum programs

- Idea: use a symbolic (= logic) encoding
- Sketched for the main components

Qubit encoding

- $|\boldsymbol{q}\rangle=\alpha|0\rangle+\beta|1\rangle$
$-|\alpha|^{2}+|\beta|^{2}=1$?

Qubit encoding

- $|q\rangle=\alpha|0\rangle+\beta|1\rangle$
- $|\alpha|^{2}+|\beta|^{2}=1 \leftarrow$ expensive
- Instead use polar coordinates:

$$
|q\rangle=\underbrace{\cos \frac{\theta}{2}}_{\alpha}|0\rangle+\underbrace{e^{i \phi} \sin \frac{\theta}{2}}_{\beta}|1\rangle
$$

Qubit encoding

- $|q\rangle=\alpha|0\rangle+\beta|1\rangle$
- $|\alpha|^{2}+|\beta|^{2}=1 \leftarrow$ expensive
- Instead use polar coordinates:

$$
|q\rangle=\underbrace{\cos \frac{\theta}{2}}_{\alpha}|0\rangle+\underbrace{e^{i \phi} \sin \frac{\theta}{2}}_{\beta}|1\rangle
$$

- Encode a qubit $|q\rangle$ as a 5-tuple $\left(\alpha, \beta_{R}, \beta_{I}, \phi, \theta\right) \in \mathbb{R}^{5}$
- Add constraints for values
- $\alpha=\cos \frac{\theta}{2} \wedge \beta_{R}=\cos \phi \cdot \sin \frac{\theta}{2} \wedge \beta_{I}=\sin \phi \cdot \sin \frac{\theta}{2}$
- $0 \leq \theta \leq \pi \wedge 0 \leq \phi<2 \pi$
- $\theta=0 \Longrightarrow \phi=0 \wedge \theta=\pi \Longrightarrow \phi=0$

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
- $I\left(\left|q_{0}\right\rangle\right)=\left|q_{0}\right\rangle$
- $X(\alpha|0\rangle+\beta|1\rangle)=\beta|0\rangle+\alpha|1\rangle$
- $\left.H(\alpha|0\rangle+\beta|1\rangle)=\frac{1}{\sqrt{2}}(\alpha+\beta)|0\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|1\rangle\right)$
- $\operatorname{SWAP}\left(\left|q_{0}, q_{1}\right\rangle\right)=\left|q_{1}, q_{0}\right\rangle$

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
- $I\left(\left|q_{0}\right\rangle\right)=\left|q_{0}\right\rangle$
- $X(\alpha|0\rangle+\beta|1\rangle)=\beta|0\rangle+\alpha|1\rangle$
- $\left.H(\alpha|0\rangle+\beta|1\rangle)=\frac{1}{\sqrt{2}}(\alpha+\beta)|0\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|1\rangle\right)$
- $\operatorname{SWAP}\left(\left|q_{0}, q_{1}\right\rangle\right)=\left|q_{1}, q_{0}\right\rangle$
- $\operatorname{CNOT}\left(\left|q_{0}, q_{1}\right\rangle\right)$?

Gate encoding

- Common gates can be encoded efficiently in a symbolic way
- $I\left(\left|q_{0}\right\rangle\right)=\left|q_{0}\right\rangle$
- $X(\alpha|0\rangle+\beta|1\rangle)=\beta|0\rangle+\alpha|1\rangle$
- $\left.H(\alpha|0\rangle+\beta|1\rangle)=\frac{1}{\sqrt{2}}(\alpha+\beta)|0\rangle+\frac{1}{\sqrt{2}}(\alpha-\beta)|1\rangle\right)$
- $\operatorname{SWAP}\left(\left|q_{0}, q_{1}\right\rangle\right)=\left|q_{1}, q_{0}\right\rangle$
- $\operatorname{CNOT}\left(\left|q_{0}, q_{1}\right\rangle\right)$?
- In general, we need an exponential representation

Measurement encoding

- Typically last operation
- Can be skipped with symbolic analysis
- Just a projection

Soundness and completeness

Theorem
The quantum program model (= our encoding) preserves the semantics of the quantum circuit model ($=$ standard model)

Corollary

Given a quantum program model with encoding \mathcal{E} and a specification φ, the program satisfies φ if and only if $\mathcal{E} \wedge \neg \varphi$ is unsatisfiable

- \mathcal{E} is a formula containing nonlinear real arithmetic with trigonometric expressions
- Undecidable but δ-decidable ${ }^{1}$
- Implies that answer "unsatisfiable" is correct

[^1]
Example: Grover's diffusion operator

Example for $n=3$:

Example: Grover's diffusion operator

Specification:

- Each qubit with non-positive phase $\left(\alpha_{i}\right)$ reduces the phase

```
conjunction = []
for i in range(n):
    conjunction.append(Implies(
    initial_state[i].r <= 0,
    final_state[i].r <= initial_state[i].r))
```


Recall: Qubit encoding

- $|q\rangle=\alpha|0\rangle+\beta|1\rangle$
- $|\alpha|^{2}+|\beta|^{2}=1 \leftarrow$ expensive
- Instead use polar coordinates:

$$
|q\rangle=\underbrace{\cos \frac{\theta}{2}}_{\alpha}|0\rangle+\underbrace{e^{i \phi} \sin \frac{\theta}{2}}_{\beta}|1\rangle
$$

- Encode a qubit $|q\rangle$ as a 5-tuple $\left(\alpha, \beta_{R}, \beta_{I}, \phi, \theta\right) \in \mathbb{R}^{5}$
- Add constraints for values
- $\alpha=\cos \frac{\theta}{2} \wedge \beta_{R}=\cos \phi \cdot \sin \frac{\theta}{2} \wedge \beta_{I}=\sin \phi \cdot \sin \frac{\theta}{2}$
- $0 \leq \theta \leq \pi \wedge 0 \leq \phi<2 \pi$
- $\theta=0 \Longrightarrow \phi=0 \wedge \theta=\pi \Longrightarrow \phi=0$

Overapproximation

- Exact initial-state constraints generally not needed
- Positive verification result for supersets sufficient

$$
-1 \leq \alpha \leq 1 \wedge-1 \leq \beta_{R} \leq 1 \wedge-1 \leq \beta_{I} \leq 1
$$

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence
- Repair of errors and program synthesis
- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$
\forall x: \mathcal{E}_{1}(x)=\mathcal{E}_{2}(x)
$$

- Repair of errors and program synthesis
- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$
\forall x: \mathcal{E}_{1}(x)=\mathcal{E}_{2}(x)
$$

- Repair of errors and program synthesis

$$
\exists G_{1}, \ldots, G_{n}: \operatorname{circuit}\left(G_{1} \ldots G_{n}\right) \models \varphi
$$

- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

Encoding of motivating problems

- Correctness analysis $\mathcal{E} \models \varphi$ (seen before)
- Program equivalence

$$
\forall x: \mathcal{E}_{1}(x)=\mathcal{E}_{2}(x)
$$

- Repair of errors and program synthesis

$$
\exists G_{1}, \ldots, G_{n}: \operatorname{circuit}\left(G_{1} \ldots G_{n}\right) \models \varphi
$$

- Optimization (e.g., number of gates, types of gates, physical implementation adhering to constraints)

$$
\exists G_{1}, \ldots, G_{n}: \operatorname{circuit}\left(G_{1} \ldots G_{n}\right) \equiv \mathcal{E}
$$

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Benchmark problems

Program Description

Toffoli	Toffoli gate	5	bit vector
TP	Quantum teleportation	6	infinite
ADD-8	8-qubit quantum adder	48	bit vector
QFT- n	n-qubit quantum Fourier transform	$\mathcal{O}\left(n^{2}\right)$	bit vector
QPE- n	n-qubit quantum phase estimation	$\mathcal{O}\left(n^{2}\right)$	singleton 1
GDO- n	n-qubit Grover's diffusion operator	$\mathcal{O}(n)$	infinite

[^2]
Algorithms

- Simulation on a classical computer
- Matrix: Encoding with (exponential) matrix/vector representation
- Mapping: Encoding with gate mapping but without overapproximation
- Approx: Encoding with gate mapping and overapproximation

Benchmark results

Benchmark	Simulation	Matrix	Mapping	Approx
Toffoli	0.02 sec	11.1 sec	1.3 sec	0.4 sec
TP	N/A	44.8 sec	21.6 sec	31.0 sec
ADD-8	6.1 h	OOM	7.6 sec	7.8 sec
QFT-3	0.005 sec	12.8 sec	5.8 sec	1.0 sec
QFT-5	0.03 sec	17.6 min	2.6 min	26.4 sec
QFT-10	1.5 sec	1.2 h	10.9 h	1.6 h
QFT-12	14.0 sec	4.0 h	timeout	7.4 h

Benchmark results

Benchmark Simulation Matrix Mapping Approx

QPE-3	N/A	19.2 sec	34.0 sec	8.7 sec
QPE-5	N/A	18.2 min	42.3 min	3.9 min
GDO-5	N/A	timeout	9.2 sec	1.3 sec
GDO-10	N/A	timeout	3.2 min	17.0 sec
GDO-12	N/A	timeout	14.2 min	20.2 sec
GDO-15	N/A	timeout	2.9 h	1.0 min
GDO-18	N/A	timeout	timeout	4.9 min
GDO-20	N/A	timeout	timeout	17.1 min
GDO-22	N/A	timeout	timeout	1.1 h
GDO-24	N/A	timeout	timeout	4.2 h

Overview

Motivation

Background

Symbolic encoding

Evaluation

Conclusion and demo

Conclusion and future work

- Symbolic encoding of quantum programs
- Fully automatic verification via δ-satisfiability
- Symbolic encoding can sometimes avoid exponential blow-up
- Simple overapproximation sometimes useful in practice
- Future directions:
- Other approximation techniques
- Falsification and approximation refinement

Demo

- Tool available at https://github.com/schillic/symQV
- Toffoli gate / CCNOT: $\left|q_{0}, q_{1}, q_{2}\right\rangle \mapsto\left|q_{0}, q_{1}, q_{0} q_{1} \oplus q_{2}\right\rangle$
- Universal gate for classical circuits

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Demo

- Tool available at https://github.com/schillic/symQV
- Toffoli gate / CCNOT: $\left|q_{0}, q_{1}, q_{2}\right\rangle \mapsto\left|q_{0}, q_{1}, q_{0} q_{1} \oplus q_{2}\right\rangle$
- Universal gate for classical circuits

[^0]: ${ }^{1}$ D. Gottesman. PhD thesis. 1997
 ${ }^{2}$ R. Cleve. Quantum Computation and Quantum Information Theory. 2000.

[^1]: ${ }^{1}$ S. Gao, J. Avigad, and E. M. Clarke. IJCAR. 2012.

[^2]: ${ }^{1}$ Parameterized gates

