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Motivation
• Some interesting problems for quantum programs
• Correctness analysis

(← focus in this presentation)

• Program equivalence

(← focus in this presentation)

• Repair of errors and program synthesis
• Optimization (e.g., number of gates, types of gates,

physical implementation adhering to constraints)
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Correctness analysis for classical programs
• Verification of classical programs is well studied
• Given are a program and a specification
• Decide whether specification holds

int f91(int x) {
if (x > 100)

return x - 10;
else

return f91(f91(x + 11));
}
int main() {

int x = user_input();
int res = f91(x);
assert (x > 100 && res == x - 10) || res == 91

}

5 / 38

f 91(x) =
{

x − 10 x > 100
91 otherwise
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Correctness analysis for quantum programs

• This presentation
• Verification against specifications in first-order logic
• Reduction to an automatic solution technique
• Efficient encoding and overapproximation
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Qubit

• Ground state |0⟩

• Excited state |1⟩

• Superposition |q⟩ = α |0⟩+ β |1⟩, α, β ∈ C

• Written as 2D vector: |q⟩ ≡

α

β


• Constraint |α|2 + |β|2 = 1
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Bloch sphere

|q⟩

x|+⟩

|−⟩

y
|i⟩

|−i⟩

z
|0⟩

|1⟩

ϕ

θ

• Polar coordinates: |q⟩ = cos θ

2︸ ︷︷ ︸
α

|0⟩+ eiϕ sin θ

2︸ ︷︷ ︸
β

|1⟩
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Multiple qubits (unentangled)

|q0, q1⟩ = |q0⟩ ⊗ |q1⟩ ≡

α0

β0

⊗
α1

β1


= α0α1 |00⟩+ α0β1 |01⟩+ β0α1 |10⟩+ β0β1 |11⟩

≡


α0α1

α0β1

β0α1

β0β1
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Quantum gates

• Unitary matrix operations

• Example: swapping of two qubits

SWAP(|q0, q1⟩) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




α0α1

α0β1

β0α1

β0β1

 =


α0α1

β0α1

α0β1

β0β1

 = |q1, q0⟩
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Another quantum gate: Controlled NOT

CNOT (|q0, q1⟩) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




α0α1

α0β1

β0α1

β0β1

 =


α0α1

α0β1

β0β1

β0α1


= |q0, q0 ⊕ q1⟩

where ⊕ is addition modulo 2 (“XOR”)
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Measurement

• “Converts” to basis state (|0⟩ or |1⟩)

• Not invertible

x|q⟩ ≡

α

β

 x

x =
{
|0⟩ with probability |α|2

|1⟩ with probability |β|2
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Are these two quantum programs equivalent?

?≡
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Black-box equivalence check

P1
?≡ P2

• Idea: pick an initial state and execute both programs
• One-way: disagreement implies different programs

• Cannot obtain exact quantum state
• Measurement only yields a basis state
• Disagreement does not imply different programs
• Approximation by executing many times
• Expensive and no guarantee

• Only checked for some quantum state
• Uncountably many quantum states to test with
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White-box equivalence check: Matrix representation

?≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• Matrices are exponentially large (n qubits ⇝ 2n × 2n)
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Computability

• Quantum computers and classical computers can solve the
same problems
• May be surprising because quantum gates are reversible
• Simulation on quantum computer requires “garbage

qubits”
• Simulation on classical computer just multiplies matrices

• Advantage only comes in terms of complexity
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Complexity

• P = deterministic polynomial time

• BPP = bounded-error probabilistic
polynomial time (error < 1/3)

• BQP = bounded-error quantum
polynomial time (error < 1/3)

• PP = probabilistic polynomial time
(error < 1/2)

• NP = nondeterministic polynomial
time

• PSPACE = polynomial space

known:

conjectured:
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Complexity of simulating a quantum program

• Non-entangled qubits: only 2 × 2
matrices

• Clifford gates (Hadamard, CNOT,
phase gate S) can be simulated in
polynomial time1

• Generally, error-bounded probabilistic simulation of n qubits
and m gates is possible with O(2nm3) classical gates2

• Simulation is BQP-complete

• Corollary: Simulation only requires polynomial space
(follows from BQP ⊆ PSPACE)

1D. Gottesman. PhD thesis. 1997
2R. Cleve. Quantum Computation and Quantum Information Theory. 2000.
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Toward a concise representation of quantum programs

• Intuitive explanation for the following equivalence?

≡

SWAP(SWAP(|q0, q1⟩))
= SWAP(|q1, q0⟩)
= |q0, q1⟩
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Symbolic encoding of quantum programs

• Idea: use a symbolic (= logic) encoding

• Sketched for the main components
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Qubit encoding

|q⟩

x|+⟩

|−⟩

y
|i⟩

|−i⟩

z
|0⟩

|1⟩

ϕ

θ

• |q⟩ = α |0⟩+ β |1⟩

• |α|2 + |β|2 = 1 ?

• Instead use polar coordinates:

|q⟩ = cos θ

2︸ ︷︷ ︸
α

|0⟩+ eiϕ sin θ

2︸ ︷︷ ︸
β

|1⟩

• Encode a qubit |q⟩ as a 5-tuple (α, βR , βI , ϕ, θ) ∈ R5

• Add constraints for values
• α = cos θ

2 ∧ βR = cos ϕ · sin θ
2 ∧ βI = sin ϕ · sin θ

2
• 0 ≤ θ ≤ π ∧ 0 ≤ ϕ < 2π

• θ = 0 =⇒ ϕ = 0 ∧ θ = π =⇒ ϕ = 0
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Gate encoding

• Common gates can be encoded efficiently in a symbolic way
• I(|q0⟩) = |q0⟩
• X (α |0⟩+ β |1⟩) = β |0⟩+ α |1⟩
• H(α |0⟩+ β |1⟩) = 1√

2(α + β) |0⟩+ 1√
2(α− β) |1⟩)

• SWAP(|q0, q1⟩) = |q1, q0⟩

• CNOT (|q0, q1⟩)

• In general, we need an exponential representation

24 / 38
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Measurement encoding

• Typically last operation

• Can be skipped with symbolic analysis

• Just a projection

25 / 38
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Soundness and completeness

Theorem
The quantum program model (= our encoding) preserves the
semantics of the quantum circuit model (= standard model)

Corollary
Given a quantum program model with encoding E and a
specification φ, the program satisfies φ if and only if E ∧ ¬φ is
unsatisfiable
• E is a formula containing nonlinear real arithmetic with

trigonometric expressions

• Undecidable but δ-decidable1

• Implies that answer “unsatisfiable” is correct

1S. Gao, J. Avigad, and E. M. Clarke. IJCAR. 2012.
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Example: Grover’s diffusion operator

Example for n = 3:
|q0⟩ H X Z X H

|q1⟩ H X X H

|q2⟩ H X X H
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Example: Grover’s diffusion operator

Specification:
• Each qubit with non-positive phase (αi) reduces the phase

conjunction = []
for i in range(n):

conjunction.append(Implies(
initial_state[i].r <= 0,
final_state[i].r <= initial_state[i].r))

28 / 38
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Recall: Qubit encoding

|q⟩

x|+⟩

|−⟩

y
|i⟩

|−i⟩

z
|0⟩

|1⟩

ϕ

θ
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α
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β

|1⟩
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2
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Overapproximation
• Exact initial-state constraints generally not needed

• Positive verification result for supersets sufficient

|q⟩

x

y

z

ϕ

θ

−1 ≤ α ≤ 1 ∧ − 1 ≤ βR ≤ 1 ∧ − 1 ≤ βI ≤ 1
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Encoding of motivating problems
• Correctness analysis E |= φ (seen before)

• Program equivalence

∀x : E1(x) = E2(x)

• Repair of errors and program synthesis

∃G1, . . . , Gn : circuit(G1 . . . Gn) |= φ

• Optimization (e.g., number of gates, types of gates, physical
implementation adhering to constraints)

∃G1, . . . , Gn : circuit(G1 . . . Gn) ≡ E
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Benchmark problems

Program Description Depth Input

Toffoli Toffoli gate 5 bit vector
TP Quantum teleportation 6 infinite
ADD-8 8-qubit quantum adder 48 bit vector
QFT-n n-qubit quantum Fourier transform O(n2) bit vector
QPE-n n-qubit quantum phase estimation O(n2) singleton1

GDO-n n-qubit Grover’s diffusion operator O(n) infinite

1Parameterized gates
33 / 38
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Algorithms

• Simulation on a classical computer

• Matrix: Encoding with (exponential) matrix/vector
representation

• Mapping: Encoding with gate mapping but without
overapproximation

• Approx: Encoding with gate mapping and overapproximation
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Benchmark results

Benchmark Simulation Matrix Mapping Approx

Toffoli 0.02 sec 11.1 sec 1.3 sec 0.4 sec
TP N/A 44.8 sec 21.6 sec 31.0 sec
ADD-8 6.1 h OOM 7.6 sec 7.8 sec

QFT-3 0.005 sec 12.8 sec 5.8 sec 1.0 sec
QFT-5 0.03 sec 17.6 min 2.6 min 26.4 sec
QFT-10 1.5 sec 1.2 h 10.9 h 1.6 h
QFT-12 14.0 sec 4.0 h timeout 7.4 h
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Benchmark results
Benchmark Simulation Matrix Mapping Approx

QPE-3 N/A 19.2 sec 34.0 sec 8.7 sec
QPE-5 N/A 18.2 min 42.3 min 3.9 min

GDO-5 N/A timeout 9.2 sec 1.3 sec
GDO-10 N/A timeout 3.2 min 17.0 sec
GDO-12 N/A timeout 14.2 min 20.2 sec
GDO-15 N/A timeout 2.9 h 1.0 min
GDO-18 N/A timeout timeout 4.9 min
GDO-20 N/A timeout timeout 17.1 min
GDO-22 N/A timeout timeout 1.1 h
GDO-24 N/A timeout timeout 4.2 h
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Conclusion and future work

• Symbolic encoding of quantum programs

• Fully automatic verification via δ-satisfiability

• Symbolic encoding can sometimes avoid exponential blow-up

• Simple overapproximation sometimes useful in practice

• Future directions:
• Other approximation techniques
• Falsification and approximation refinement
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Demo
• Tool available at https://github.com/schillic/symQV

• Toffoli gate / CCNOT: |q0, q1, q2⟩ 7→ |q0, q1, q0q1 ⊕ q2⟩

• Universal gate for classical circuits

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


38 / 38

https://github.com/schillic/symQV


Motivation Background Symbolic encoding Evaluation Conclusion and demo

Demo
• Tool available at https://github.com/schillic/symQV

• Toffoli gate / CCNOT: |q0, q1, q2⟩ 7→ |q0, q1, q0q1 ⊕ q2⟩

• Universal gate for classical circuits

≡

V V V †
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