Safety verification of decision-tree policies in continuous time

NeurIPS 2023 spotlight

Christian Schilling

Anna Lukina

Emir Demirović Kim Guldstrand Larsen

Decision-tree control systems

A **decision-tree control system** (DTCS) is a triple (f, \mathcal{T}, τ) with

- f: continuous-time environment $\dot{x} = f(x, u) : \mathbb{R}^{n+m} \to \mathbb{R}^n$
- \mathcal{T} : decision-tree policy $\mathcal{T}: \mathbb{R}^n \to U$ where $U \subseteq \mathbb{R}^m$
- τ : control period $\tau \in \mathbb{R}^+$

Example: Cart/pole system

Problem statement

Given a DTCS (f, \mathcal{T}, τ) , a set of initial states $\mathcal{X}_0 \subseteq \mathbb{R}^n$, and an iteration bound k_{max} , compute the **set of reachable states**

$$\mathcal{X}_0$$
: $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 \mathcal{X}_0 : $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline \end{array}$

 \mathcal{X}_0 : $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline -1 & 1 \\ \hline \end{array}$

 \mathcal{X}_0 : $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline \end{array}$

 \mathcal{X}_0 : $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 \mathcal{X}_0 : $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$

 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline -1 & 1 \\ \hline \end{array}$

$$\mathcal{X}_0$$
: $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$
 τ : 0.02

$$\mathcal{X}_0$$
: $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$
 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline -1 & 1 \end{array}$

$$\mathcal{X}_0$$
: $p_0 = v_0 = 0$; $\theta_0, \omega_0 \in [-0.05, 0.05]$
 τ : 0.02

 $\begin{array}{c|c} \theta \leq -0.014 \\ \hline -1 & \omega \leq -0.201 \\ \hline -1 & 1 \end{array}$

Reach-avoid problem

 By computing the reachable states we can analyze reach-avoid specifications: "avoid A and reach R at time t"

$$\Box^{\leq t} \neg A \wedge \Diamond^t R$$

- Deciding whether such specifications hold is **undecidable** already for nonlinear environments f(x, u)
- If f(x, u) = u, we call f state independent

Theorem

The reach-avoid problem for state-independent DTCS is

- 1. undecidable for unbounded time
- 2. PSPACE-complete for bounded time

Stabilization of cart/pole policy

Acrobot policy reaching swing-up goal

Car policy reaching top of the mountain (discrete-time setting)

Quadrotor policy following reference trajectory to goal region

Contributions

- Parametric reachability algorithm with sufficient conditions for soundness and relative completeness
- Instantiated algorithm based on Taylor models and axis-aligned decisions (" $x \le c$ "), exploiting problem structure
- Complexity proof
- Public implementation and experimental evaluation https://neurips.cc/virtual/2023/poster/70218