symQV: Automated Symbolic Verification of Quantum Programs

Fabian Bauer-Marquart, Stefan Leue,Christian SchillingUniversity of KonstanzAalborg University

FM 2023

Evaluation

Conclusion

Motivation

- Quantum computers on the rise but face the same problems as classical computers
- Verification of classical programs well studied
- Verification of quantum programs under-explored
 - Interactive proof assistants
 - Automated program equivalence checking
 - Programs with fixed input
- This work
 - Automatic verification against FOL specifications
 - Reduction to SMT solving
 - Efficient encoding and overapproximation

SMT encoding

Evaluation

Conclusion

Background

SMT encoding

Evaluation

Evaluation

Conclusion

Background

SMT encoding

Evaluation

Evaluation

Conclusion

Qubit

- Ground state $|0\rangle$
- Excited state |1
 angle
- Superposition $|q\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$
- Constraint $|\alpha|^2 + |\beta|^2 = 1$
- Written as 2D vector: $|q\rangle \equiv \begin{vmatrix} \alpha \\ \beta \end{vmatrix}$

Evaluation

Conclusion

Bloch sphere

• Polar coordinates: $|q
angle = \cos{rac{ heta}{2}} |0
angle + e^{i\phi}\sin{rac{ heta}{2}} |1
angle$

Evaluation

Conclusion

Multiple qubits

$$\begin{aligned} |q_0 q_1\rangle &= |q_0\rangle \otimes |q_1\rangle \quad \equiv \begin{bmatrix} \alpha_0\\ \beta_0 \end{bmatrix} \otimes \begin{bmatrix} \alpha_1\\ \beta_1 \end{bmatrix} \\ &= \alpha_0 \alpha_1 |00\rangle + \alpha_0 \beta_1 |01\rangle + \beta_0 \alpha_1 |10\rangle + \beta_0 \beta_1 |11\rangle \\ &\equiv \begin{bmatrix} \alpha_0 \alpha_1\\ \alpha_0 \beta_1\\ \beta_0 \alpha_1\\ \beta_0 \beta_1 \end{bmatrix} \end{aligned}$$

Evaluation

Conclusion

Quantum gates

- Invertible matrix operations
- Example: swapping of two qubits

$$SWAP(|q_{0}\rangle \otimes |q_{1}\rangle) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{0} \\ \beta_{0} \end{bmatrix} \otimes \begin{bmatrix} \alpha_{1} \\ \beta_{1} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{0}\alpha_{1} \\ \alpha_{0}\beta_{1} \\ \beta_{0}\alpha_{1} \\ \beta_{0}\beta_{1} \end{bmatrix} = \begin{bmatrix} \alpha_{0}\alpha_{1} \\ \beta_{0}\alpha_{1} \\ \alpha_{0}\beta_{1} \\ \beta_{0}\beta_{1} \end{bmatrix} = |q_{1}\rangle \otimes |q_{0}\rangle$$

Evaluation

Conclusion

Measurement and challenges

- Measurement: converts to classical bit
- Challenges with quantum programs
 - Measurement destroys state (not invertible)
 - Simulation is probabilistic and requires many runs
 - Exponential state space
 - Entanglement: dependency between qubits (ignored in this presentation)

SMT encoding ●○○○○ Evaluation

Conclusion

Overview

Background

 $\mathsf{SMT}\ \mathsf{encoding}$

Evaluation

SMT encoding ○●○○○ Evaluation

Conclusion

Qubit encoding

- Encode a qubit $|q\rangle$ as a 5-tuple $(\alpha, \beta_R, \beta_I, \phi, \theta) \in \mathbb{R}^5$
- Add constraints for values
 - $\alpha = \cos \frac{\theta}{2} \wedge \beta_R = \cos \phi \cdot \sin \frac{\theta}{2} \wedge \beta_I = \sin \phi \cdot \sin \frac{\theta}{2}$

•
$$0 \le heta \le \pi$$
 \land $0 \le \phi < 2\pi$

•
$$\theta = 0 \implies \phi = 0 \land \theta = \pi \implies \phi = 0$$

SMT encoding

Evaluation

Conclusion

Gates, measurements etc.

- Common gates can be encoded efficiently in a symbolic way Example: $SW\!AP(|q_0\rangle, |q_1\rangle) \rightsquigarrow (|q_1\rangle, |q_0\rangle)$
- In general we need the (exponential) matrix representation (see the paper)
- Measurement is just a projection

SMT encoding

Evaluation

Conclusion

Soundness and completeness

Theorem

The quantum program model (= our encoding) preserves the semantics of the quantum circuit model (= standard model)

Corollary

Given a quantum program model with encoding M_Q and a specification φ , the program satisfies φ if and only if $M_Q \wedge \neg \varphi$ is unsatisfiable

- M_Q is a formula containing nonlinear real arithmetic with trigonometric expressions
- Undecidable but δ -decidable¹

¹S. Gao, J. Avigad, and E. M. Clarke. *IJCAR*. 2012.

SMT encoding ○○○○● Evaluation

Conclusion

Overapproximation

 $-1 \leq \alpha \leq 1 \quad \wedge \quad -1 \leq \beta_{\textit{R}} \leq 1 \quad \wedge \quad -1 \leq \beta_{\textit{I}} \leq 1$

SMT encoding

Evaluation

Conclusion

Background

SMT encoding

Evaluation

SMT encoding

Evaluation

Conclusion

Benchmark problems

Program	Description	Depth	Input
Toffoli	Toffoli gate	5	bit vector
ТР	Quantum teleportation	6	infinite
ADD-8	8-qubit quantum adder	48	bit vector
QFT-n	<i>n</i> -qubit quantum Fourier transform	$\mathcal{O}(n^2)$	bit vector
QPE- <i>n</i>	<i>n</i> -qubit quantum phase estimation	$\mathcal{O}(n^2)$	$singleton^1$
GDO-n	<i>n</i> -qubit Grover's diffusion operator	$\mathcal{O}(n)$	infinite

¹Parameterized gates

SMT encoding

Evaluation

Conclusion

Algorithms

Simulation

- Matrix: SMT encoding with (exponential) matrix/vector representation
- **Exact**: SMT encoding with gate mapping but without overapproximation
- symQV: SMT encoding with gate mapping and overapproximation

SMT encoding

Evaluation

Conclusion

Benchmark results

Benchmark	Simulation	Matrix	Exact	symQV
Toffoli	0.02 sec	11.1 sec	1.3 sec	0.4 sec
ТР	N/A	44.8 sec	21.6 sec	31.0 sec
ADD-8	6.1 h	OOM	7.6 sec	7.8 sec
QFT-3	0.005 sec	12.8 sec	5.8 sec	1.0 sec
QFT-5	0.03 sec	17.6 min	2.6 min	26.4 sec
QFT-10	1.5 sec	1.2 h	10.9 h	1.6 h
QFT-12	14.0 sec	4.0 h	timeout	7.4 h

Evaluation

Conclusion

Benchmark results

Benchmark	Simulation	Matrix	Exact	symQV
QPE-3	N/A	19.2 sec	34.0 sec	8.7 sec
QPE-5	N/A	18.2 min	42.3 min	3.9 min
GDO-5	N/A	timeout	9.2 sec	1.3 sec
GDO-10	N/A	timeout	3.2 min	17.0 sec
GDO-12	N/A	timeout	14.2 min	20.2 sec
GDO-15	N/A	timeout	2.9 h	1.0 min
GDO-18	N/A	timeout	timeout	4.9 min
GDO-20	N/A	timeout	timeout	17.1 min
GDO-22	N/A	timeout	timeout	1.1 h
GDO-24	N/A	timeout	timeout	4.2 h

SMT encoding

Evaluation

Conclusion

Varying the δ parameter

δ	GDO-12	GDO-15	GDO-18
10^{-4}	20.2 sec	1.0 min	4.9 min
10^{-6}	20.5 sec	28.0 min	33.1 min
10^{-8}	20.8 sec	49.4 min	58.7 min
10^{-10}	21.1 sec	52.3 min	1.2 h

SMT encoding

Evaluation

Conclusion ●○

Background

SMT encoding

Evaluation

Evaluation

Conclusion ○●

Conclusion and future work

- SMT encoding of quantum programs
- Fully automatic verification via δ -satisfiability
- Symbolic encoding can sometimes avoid exponential blow-up
- Simple overapproximation sometimes useful in practice
- Future directions:
 - Other approximation techniques
 - Falsification and CEGAR