Calculus with Convex Sets in a Nutshell

Christian Schilling

April 2, 2019

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Convex sets

• We consider the vector space \mathbb{R}^n

Definition (Convex set)

X is convex if $X = \{\lambda \cdot \vec{x} + (1 - \lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in X, \lambda \in [0, 1] \subseteq \mathbb{R}\}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Convex sets

• We consider the vector space \mathbb{R}^n

Definition (Convex set)

X is convex if $X = \{\lambda \cdot \vec{x} + (1 - \lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in X, \lambda \in [0, 1] \subseteq \mathbb{R}\}$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Compact sets

Definition (Closed set)

A set is *closed* if it contains all its boundary points

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Compact sets

Definition (Closed set)

A set is *closed* if it contains all its boundary points

Definition (Bounded set)

X is bounded if $\exists \delta \in \mathbb{R} \ \forall \vec{x}, \vec{y} \in X : \|x - y\| \leq \delta$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Compact sets

Definition (Closed set)

A set is *closed* if it contains all its boundary points

Definition (Bounded set)

X is bounded if $\exists \delta \in \mathbb{R} \ \forall \vec{x}, \vec{y} \in X : \|x - y\| \leq \delta$

Definition (Compact set)

A set is compact if it is closed and bounded

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

inaries Basic convex sets ococo ●●○○ Set operations Advanced convex sets Support function ococo Simplest examples

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

More examples

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Unit balls

Definition (p-norm)

$$\|\vec{x} = (x_1, \ldots, x_n)\|_p := \sqrt[p]{|x_1|^p + \cdots + |x_n|^p}.$$

• Balls in the *p*-norm are convex for $p \ge 1$.

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Unit balls

Definition (p-norm)

$$\|\vec{x} = (x_1, \dots, x_n)\|_p := \sqrt[p]{|x_1|^p + \dots + |x_n|^p}$$

• Balls in the *p*-norm are convex for $p \ge 1$.

Unit ball in 2/3-norm (not convex!)

Definition (p-norm)

$$\|\vec{x} = (x_1, \dots, x_n)\|_p := \sqrt[p]{|x_1|^p + \dots + |x_n|^p}.$$

• Balls in the *p*-norm are convex for $p \ge 1$.

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Unbounded sets

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Minkowski sum

Definition

 $X \oplus Y := \{\vec{x} + \vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Minkowski sum

Definition

 $X \oplus Y := \{\vec{x} + \vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Minkowski sum

Definition

Square \oplus circle centered in the origin

Ρ	r	e	I	i	r	n	i	r	1	a	r	i	e	S
0)(c)										

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Linear map

Definition

 $M \cdot X := \{M \cdot \vec{x} \mid \vec{x} \in X\}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Linear map

Definition

 $M \cdot X := \{M \cdot \vec{x} \mid \vec{x} \in X\}$

Invertible map

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Linear map

Definition

 $M \cdot X := \{M \cdot \vec{x} \mid \vec{x} \in X\}$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Convex hull

Definition CH(X) := smallest set Y s.t.

 $Y = X \cup \{\lambda \cdot ec{x} + (1 - \lambda) \cdot ec{y} \mid ec{x}, ec{y} \in Y, \lambda \in [0, 1] \subseteq \mathbb{R}\}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Convex hull

Definition CH(X) := smallest set Y s.t.

 $Y = X \cup \{\lambda \cdot \vec{x} + (1 - \lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in Y, \lambda \in [0, 1] \subseteq \mathbb{R}\}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Convex hull

Definition CH(X) := smallest set Y s.t.

 $Y = X \cup \{\lambda \cdot \vec{x} + (1 - \lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in Y, \lambda \in [0, 1] \subseteq \mathbb{R}\}$

Convex hull of the union

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Intersection

Definition

 $X \cap Y := \{ \vec{x} \mid \vec{x} \in X \land \vec{x} \in Y \}$

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Intersection

Definition

Basic convex sets

Set operations 00000

Advanced convex sets

Intersection

Definition

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Generalizations of balls

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Polytopes

Definition (Vertex representation)

A polytope is the convex hull of the union of finitely many singletons

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Polytopes

Definition (Vertex representation)

A polytope is the convex hull of the union of finitely many singletons

Definition (Constraint (or half-space) representation)

A polytope is the bounded intersection of finitely many half-spaces

Ρ	ľ	e	I	i	n	1	i	ľ	1	а	r	i	e	S
С	0	D	C)										

Basic convex sets

Set operations

Advanced convex sets

Support functio

Conclusion

Polytopes

Definition (Vertex representation)

A polytope is the convex hull of the union of finitely many singletons

Definition (Constraint (or half-space) representation)

A polytope is the bounded intersection of finitely many half-spaces

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Zonotopes

• Minkowski sum of line segments

$$\left\{\vec{c} + \sum_{i=1}^{p} \xi_i \cdot \vec{g}_i \ \middle| \ \xi_i \in [-1,1]\right\}$$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Zonotopes

Minkowski sum of line segments

$$\left\{\vec{c} + \sum_{i=1}^{p} \xi_i \cdot \vec{g}_i \ \middle| \ \xi_i \in [-1,1]\right\}$$

• Centrally symmetric polytope

inaries	Basic convex sets	Set operations	Advanced convex sets	Support function
		Closure	properties	

	$X \oplus Y$	$M \cdot X$	$CH(X \cup Y)$	$X \cap Y$
Hyperrectangle	٢	\odot	٢	© ¹
Ellipsoid	\odot	0	\odot	\odot
Zonotope	0	0	٢	\odot
Polytope	3	0	٢	3

Prelim

 $^{^1 {\}rm Unless}$ the intersection is empty

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Support function

Definition (Support function) Let $\emptyset \subsetneq X \subseteq \mathbb{R}^n$ be a compact convex set and $\vec{d} \in \mathbb{R}^n$ a direction

$$\rho_{X} : \mathbb{R}^{n} \to \mathbb{R}$$
$$\rho_{X}(\vec{d}) := \max_{\vec{x} \in X} \langle \vec{d}, \vec{x} \rangle$$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Support function

Definition (Support function) Let $\emptyset \subsetneq X \subseteq \mathbb{R}^n$ be a compact convex set and $\vec{d} \in \mathbb{R}^n$ a direction

$$\rho_X : \mathbb{R}^n \to \mathbb{R}$$
 $\rho_X(\vec{d}) := \max_{\vec{x} \in X} \langle \vec{d}, \vec{x} \rangle$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Support function

Definition (Support function) Let $\emptyset \subsetneq X \subseteq \mathbb{R}^n$ be a compact convex set and $\vec{d} \in \mathbb{R}^n$ a direction

$$\rho_X : \mathbb{R}^n \to \mathbb{R}$$
$$\rho_X(\vec{d}) := \max_{\vec{x} \in X} \langle \vec{d}, \vec{x} \rangle$$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Properties of the support function

Proposition

•
$$\rho_{\lambda \cdot X}(\vec{d}) = \rho_X(\lambda \cdot \vec{d})$$

•
$$\rho_{X\oplus Y}(\vec{d}) = \rho_X(\vec{d}) + \rho_Y(\vec{d})$$

•
$$\rho_{M\cdot X}(\vec{d}) = \rho_X(M^T \cdot \vec{d})$$

•
$$\rho_{CH(X\cup Y)}(\vec{d}) = \max(\rho_X(\vec{d}), \rho_Y(\vec{d}))$$

Proposition

For every compact convex set $X \neq \emptyset$ and $D \subseteq \mathbb{R}^n$ we have

$$X \subseteq \bigcap_{\vec{d} \in D} \langle \vec{d}, \vec{x} \rangle \leq
ho_X(\vec{d})$$

and equality holds for $D = \mathbb{R}^n$

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Complexity

- Optimization of a linear function over a convex set
 → convex optimization (efficient!)
- Even more efficient for specific set representations
 - Polytopes: linear program
 - Zonotopes: $\mathcal{O}(p \cdot n^2)$ (p generators)
 - Ellipsoids: O(n²)
 - Hyperrectangles: $\mathcal{O}(n)$
- Let c(X) be the complexity for set X
 - $X \oplus Y$: $\mathcal{O}(c(X) + c(Y))$
 - $M \cdot X$: $\mathcal{O}(n^2 + c(X))$
 - CH(X, Y): O(c(X) + c(Y))

ies Basic convex sets Set operations Ad

Advanced convex sets

Support function

Conclusion

Basic convex sets

Set operations

Advanced convex sets

Support function 00000

naries Basic convex sets Se

Set operations

Advanced convex sets

Support function

Conclusion

minaries Basic convex sets Set operations Advanced

Advanced convex sets

Support function

Conclusion

- Template directions
- ε-close approximation

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion • O

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

24 / 25

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Conclusion

- Convex sets are expressive
- Closure under most standard set operations
- Support function allows for efficient lazy computations
- Non-convex sets: approximate by (union of) convex sets
- Implemented in the Julia package LazySets (joint work with Marcelo Forets from Universidad de la República, Uruguay) and available on Github

