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Convex sets
• We consider the vector space Rn

Definition (Convex set)
X is convex if X = {λ · ~x + (1− λ) · ~y | ~x , ~y ∈ X , λ ∈ [0, 1] ⊆ R}
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Compact sets

Definition (Closed set)
A set is closed if it contains all its boundary points

Definition (Bounded set)
X is bounded if ∃δ ∈ R ∀~x , ~y ∈ X : ‖x − y‖ ≤ δ

Definition (Compact set)
A set is compact if it is closed and bounded
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Simplest examples
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More examples
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Definition (p-norm)
‖~x = (x1, . . . , xn)‖p := p√|x1|p + · · ·+ |xn|p.

• Balls in the p-norm are convex for p ≥ 1.
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Unit balls
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Unit balls

Unit ball in 2/3-norm (not convex!)

Definition (p-norm)
‖~x = (x1, . . . , xn)‖p := p√|x1|p + · · ·+ |xn|p.

• Balls in the p-norm are convex for p ≥ 1.
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Unbounded sets
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Minkowski sum

Definition
X ⊕ Y := {~x + ~y | ~x ∈ X , ~y ∈ Y }
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Minkowski sum

Definition
X ⊕ Y := {~x + ~y | ~x ∈ X , ~y ∈ Y }
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Linear map

Definition
M · X := {M · ~x | ~x ∈ X}
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Linear map

Definition
M · X := {M · ~x | ~x ∈ X}
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Linear map

Definition
M · X := {M · ~x | ~x ∈ X}

M =

0 0
0 1
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Convex hull

Definition
CH(X ) := smallest set Y s.t.

Y = X ∪ {λ · ~x + (1− λ) · ~y | ~x , ~y ∈ Y , λ ∈ [0, 1] ⊆ R}
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Convex hull
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Intersection

Definition
X ∩ Y := {~x | ~x ∈ X ∧ ~x ∈ Y }
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Intersection

Definition
X ∩ Y := {~x | ~x ∈ X ∧ ~x ∈ Y }
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Intersection
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Generalizations of balls
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Polytopes
Definition (Vertex representation)
A polytope is the convex hull of the union of finitely many singletons
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Polytopes
Definition (Vertex representation)
A polytope is the convex hull of the union of finitely many singletons

Definition (Constraint (or half-space) representation)
A polytope is the bounded intersection of finitely many half-spaces
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Polytopes
Definition (Vertex representation)
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Zonotopes
• Minkowski sum of line segments{

~c +
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i=1
ξi · ~gi
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}
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Closure properties

X ⊕ Y M · X CH(X ∪ Y ) X ∩ Y
Hyperrectangle , / / ,1

Ellipsoid / , / /

Zonotope , , / /

Polytope , , , ,

1Unless the intersection is empty
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Support function

Definition (Support function)
Let ∅ ( X ⊆ Rn be a compact convex set and ~d ∈ Rn a direction

ρX : Rn → R

ρX (~d) := max
~x∈X
〈~d , ~x〉

X

{~x ∈ R2 : 〈~d , ~x〉 ≤ ρX (~d)}

x1

x2~d

~d
~d
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Properties of the support function
Proposition
• ρλ·X (~d) = ρX (λ · ~d)

• ρX⊕Y (~d) = ρX (~d) + ρY (~d)

• ρM·X (~d) = ρX (MT · ~d)

• ρCH(X∪Y )(~d) = max(ρX (~d), ρY (~d))

Proposition
For every compact convex set X 6= ∅ and D ⊆ Rn we have

X ⊆
⋂
~d∈D

〈~d , ~x〉 ≤ ρX (~d)

and equality holds for D = Rn
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Complexity

• Optimization of a linear function over a convex set
→ convex optimization (efficient!)

• Even more efficient for specific set representations
• Polytopes: linear program
• Zonotopes: O(p · n2) (p generators)
• Ellipsoids: O(n2)
• Hyperrectangles: O(n)

• Let c(X ) be the complexity for set X
• X ⊕ Y : O(c(X ) + c(Y ))
• M · X : O(n2 + c(X ))
• CH(X ,Y ): O(c(X ) + c(Y ))
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Overapproximation using support function
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Conclusion
• Convex sets are expressive

• Closure under most standard set operations

• Support function allows for efficient lazy computations

• Non-convex sets: approximate by (union of) convex sets

• Implemented in the Julia package LazySets (joint work with
Marcelo Forets from Universidad de la República, Uruguay)
and available on Github

25 / 25

https://github.com/JuliaReach/LazySets.jl
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