Calculus with Convex Sets in a Nutshell

Christian Schilling

April 2, 2019

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Convex sets

- We consider the vector space \mathbb{R}^{n}

Definition (Convex set)

X is convex if $X=\{\lambda \cdot \vec{x}+(1-\lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in X, \lambda \in[0,1] \subseteq \mathbb{R}\}$

Convex sets

- We consider the vector space \mathbb{R}^{n}

Definition (Convex set)
X is convex if $X=\{\lambda \cdot \vec{x}+(1-\lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in X, \lambda \in[0,1] \subseteq \mathbb{R}\}$

Compact sets

Definition (Closed set)

A set is closed if it contains all its boundary points

$$
1 \leq x_{1} \leq 2 \quad\left(\subseteq \mathbb{R}^{1}\right)
$$

$$
1<x_{1}<2 \quad\left(\subseteq \mathbb{R}^{1}\right)
$$

Compact sets

Definition (Closed set)

A set is closed if it contains all its boundary points
Definition (Bounded set)
X is bounded if $\quad \exists \delta \in \mathbb{R} \forall \vec{x}, \vec{y} \in X:\|x-y\| \leq \delta$

$$
1 \leq x_{1} \leq 2 \quad\left(\subseteq \mathbb{R}^{1}\right)
$$

$1 \leq x_{1} \quad\left(\subseteq \mathbb{R}^{1}\right)$

Compact sets

Definition (Closed set)
A set is closed if it contains all its boundary points
Definition (Bounded set)
X is bounded if $\quad \exists \delta \in \mathbb{R} \forall \vec{x}, \vec{y} \in X:\|x-y\| \leq \delta$
Definition (Compact set)
A set is compact if it is closed and bounded

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Simplest examples

Singleton

More examples

Unit balls

Unit ball in ∞-norm aka hypercube

Unit ball in 2-norm aka hypersphere

Unit ball in 1-norm aka cross-polytope

Definition (p-norm)

$$
\left\|\vec{x}=\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}
$$

- Balls in the p-norm are convex for $p \geq 1$.

Unit balls

Unit ball in 3-norm

Unit ball in 42-norm

Unit ball in

$$
(\pi-2) \text {-norm }
$$

Definition (p-norm)

$$
\left\|\vec{x}=\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}
$$

- Balls in the p-norm are convex for $p \geq 1$.

Unit balls

Unit ball in $2 / 3$-norm (not convex!)

Definition (p-norm)

$$
\left\|\vec{x}=\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}
$$

- Balls in the p-norm are convex for $p \geq 1$.

Unbounded sets

Hyperplane $\langle\vec{d}, \vec{x}\rangle=c$

Half-space $\langle\vec{d}, \vec{x}\rangle \leq c$

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Minkowski sum

Definition

$$
X \oplus Y:=\{\vec{x}+\vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}
$$

Minkowski sum

Definition

$$
X \oplus Y:=\{\vec{x}+\vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}
$$

Translation

Minkowski sum

Definition

$$
X \oplus Y:=\{\vec{x}+\vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}
$$

Square \oplus circle centered in the origin

Linear map

Definition

$$
M \cdot X:=\{M \cdot \vec{x} \mid \vec{x} \in X\}
$$

Linear map

Definition

$$
M \cdot X:=\{M \cdot \vec{x} \mid \vec{x} \in X\}
$$

Invertible map

Linear map

Definition

$$
M \cdot X:=\{M \cdot \vec{x} \mid \vec{x} \in X\}
$$

Convex hull

Definition

$C H(X):=$ smallest set Y s.t.

$$
Y=X \cup\{\lambda \cdot \vec{x}+(1-\lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in Y, \lambda \in[0,1] \subseteq \mathbb{R}\}
$$

Convex hull

Definition

$C H(X):=$ smallest set Y s.t.

$$
Y=X \cup\{\lambda \cdot \vec{x}+(1-\lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in Y, \lambda \in[0,1] \subseteq \mathbb{R}\}
$$

Union (not convex)

Convex hull

Definition

$C H(X):=$ smallest set Y s.t.

$$
Y=X \cup\{\lambda \cdot \vec{x}+(1-\lambda) \cdot \vec{y} \mid \vec{x}, \vec{y} \in Y, \lambda \in[0,1] \subseteq \mathbb{R}\}
$$

Convex hull of the union

Intersection

Definition

$$
X \cap Y:=\{\vec{x} \mid \vec{x} \in X \wedge \vec{x} \in Y\}
$$

Intersection

Definition

$$
X \cap Y:=\{\vec{x} \mid \vec{x} \in X \wedge \vec{x} \in Y\}
$$

Disjoint

Intersection

Definition

$$
X \cap Y:=\{\vec{x} \mid \vec{x} \in X \wedge \vec{x} \in Y\}
$$

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Generalizations of balls

Hyperrectangle

(Hyper-)Ellipsoid

Polytopes

Definition (Vertex representation)

A polytope is the convex hull of the union of finitely many singletons

Polytopes

Definition (Vertex representation)
A polytope is the convex hull of the union of finitely many singletons
Definition (Constraint (or half-space) representation)
A polytope is the bounded intersection of finitely many half-spaces

Polytopes

Definition (Vertex representation)
A polytope is the convex hull of the union of finitely many singletons
Definition (Constraint (or half-space) representation)
A polytope is the bounded intersection of finitely many half-spaces

Polyhedron (unbounded)

Zonotopes

- Minkowski sum of line segments

$$
\left\{\vec{c}+\sum_{i=1}^{p} \xi_{i} \cdot \vec{g}_{i} \mid \xi_{i} \in[-1,1]\right\}
$$

Zonotopes

- Minkowski sum of line segments

$$
\left\{\vec{c}+\sum_{i=1}^{p} \xi_{i} \cdot \vec{g}_{i} \mid \xi_{i} \in[-1,1]\right\}
$$

- Centrally symmetric polytope

Closure properties

	$X \oplus Y$	$M \cdot X$	$C H(X \cup Y)$	$X \cap Y$
Hyperrectangle	\bigcirc	\odot°	©	${ }^{(2)}$
Ellipsoid	\bigcirc	\bigcirc	\bigcirc	${ }^{(}$
Zonotope	\bigcirc	\bigcirc	©	(2)
Polytope	©	©	©	©

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Support function

Definition (Support function)

Let $\emptyset \subsetneq X \subseteq \mathbb{R}^{n}$ be a compact convex set and $\vec{d} \in \mathbb{R}^{n}$ a direction

$$
\begin{gathered}
\rho_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\rho_{X}(\vec{d}):=\max _{\vec{x} \in X}\langle\vec{d}, \vec{x}\rangle
\end{gathered}
$$

Support function

Definition (Support function)
Let $\emptyset \subsetneq X \subseteq \mathbb{R}^{n}$ be a compact convex set and $\vec{d} \in \mathbb{R}^{n}$ a direction

$$
\begin{gathered}
\rho_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\rho_{X}(\vec{d}):=\max _{\vec{x} \in X}\langle\vec{d}, \vec{x}\rangle
\end{gathered}
$$

Support function

Definition (Support function)
Let $\emptyset \subsetneq X \subseteq \mathbb{R}^{n}$ be a compact convex set and $\vec{d} \in \mathbb{R}^{n}$ a direction

$$
\begin{gathered}
\rho_{X}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\rho_{X}(\vec{d}):=\max _{\vec{x} \in X}\langle\vec{d}, \vec{x}\rangle
\end{gathered}
$$

Properties of the support function

Proposition

- $\rho_{\lambda \cdot X}(\vec{d})=\rho_{X}(\lambda \cdot \vec{d})$
- $\rho_{X \oplus Y}(\vec{d})=\rho_{X}(\vec{d})+\rho_{Y}(\vec{d})$
- $\rho_{M \cdot X}(\vec{d})=\rho_{X}\left(M^{T} \cdot \vec{d}\right)$
- $\rho_{C H(X \cup Y)}(\vec{d})=\max \left(\rho_{X}(\vec{d}), \rho_{Y}(\vec{d})\right)$

Proposition

For every compact convex set $X \neq \emptyset$ and $D \subseteq \mathbb{R}^{n}$ we have

$$
X \subseteq \bigcap_{\vec{d} \in D}\langle\vec{d}, \vec{x}\rangle \leq \rho_{X}(\vec{d})
$$

and equality holds for $D=\mathbb{R}^{n}$

Complexity

- Optimization of a linear function over a convex set \rightarrow convex optimization (efficient!)
- Even more efficient for specific set representations
- Polytopes: linear program
- Zonotopes: $\mathcal{O}\left(p \cdot n^{2}\right) \quad$ (p generators)
- Ellipsoids: $\mathcal{O}\left(n^{2}\right)$
- Hyperrectangles: $\mathcal{O}(n)$
- Let $c(X)$ be the complexity for set X
- $X \oplus Y: \mathcal{O}(c(X)+c(Y))$
- $M \cdot X: \mathcal{O}\left(n^{2}+c(X)\right)$
- $C H(X, Y): \mathcal{O}(c(X)+c(Y))$

Overapproximation using support function

- Template directions
- ε-close approximation

Overview

Preliminaries

Basic convex sets

Set operations

Advanced convex sets

Support function

Conclusion

Conclusion

- Convex sets are expressive
- Closure under most standard set operations
- Support function allows for efficient lazy computations
- Non-convex sets: approximate by (union of) convex sets
- Implemented in the Julia package LazySets (joint work with Marcelo Forets from Universidad de la República, Uruguay) and available on Github

