# Reachability for weakly nonlinear systems using Carleman linearization



#### SIAM Conference on Computational Science and Engineering

2023

based on work presented at Reachability Problems 2021

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Overview

#### Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Reachability Linearization Conservative approximation

0000

#### Reachability for linear continuous systems



<sup>2</sup>Pérez Zerpa, Forets, and Freire Caporale. *Proceedings of the JuliaCon* Conferences (2022).

 Reachability
 Linearization
 Conservative approximation
 Evaluation
 Conclusion

 0000
 00000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <t

### Reachability for linear continuous systems



<sup>2</sup>Pérez Zerpa, Forets, and Freire Caporale. *Proceedings of the JuliaCon Conferences* (2022).



<sup>2</sup>Pérez Zerpa, Forets, and Freire Caporale. *Proceedings of the JuliaCon Conferences* (2022).

 Reachability
 Linearization
 Conservative approximation
 Evaluation
 Conclusion

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

### Reachability for linear continuous systems



<sup>2</sup>Pérez Zerpa, Forets, and Freire Caporale. *Proceedings of the JuliaCon Conferences* (2022).

Linearization

Conservative approximation

Evaluation

Conclusion

# Reachability for linear continuous systems



# Reachability for nonlinear continuous systems

- Several proposals exist, e.g., based on Taylor models<sup>1</sup>
- $T_3 = 0.394 0.393t + 0.182t^2 + 0.014t^3 + [-0.946, 0.803]$
- $T_8 = 0.394 0.393t + 0.182t^2 + 0.014t^3 0.054t^4 + 0.024t^5 + 0.001t^6 0.005t^7 + 0.001t^8 + [-0.041, 0.025]$



<sup>1</sup>Berz and Makino. *Reliab. Comput.* (1998).

Conclusion

# State of the art in continuous reachability

#### Linear systems

Reachability

000

- Arbitrary precision
- Wrapping-free algorithms
- Thousands of dimensions<sup>1</sup>
- Nonlinear systems
  - Arbitrary precision
  - Wrapping effect
  - Only very few dimensions

<sup>1</sup>Bogomolov, Forets, Frehse, Podelski, and Schilling. *Inf. Comput.* (2022).

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Overview

Reachability for continuous systems

#### Carleman linearization

Conservative approximation

Evaluation

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Kronecker product

$$x \otimes x := (x_1^2, x_1 x_2, x_2 x_1, x_2^2)^T \quad (x \in \mathbb{R}^2)$$
$$x^{\otimes k} := \underbrace{x \otimes \cdots \otimes x}_{k \text{ times}}$$
$$A \otimes B := \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$



Linearization

Conservative approximation

Evaluation

Conclusion

## Quadratic ODEs

• Polynomial ODEs can be reduced to quadratic form



• Assume that  $F_1$  and  $F_2$  are time invariant

Linearization

Conservative approximation

Evaluation

Conclusion

# Carleman linearization<sup>1</sup>

- Assume a quadratic system (1)  $\frac{dx(t)}{dt} = F_1 x + F_2 x^{\otimes 2}$ of dimension *n* with initial condition  $x(0) = x_0$
- Introducing auxiliary variables ŷ<sub>j</sub> := x<sup>⊗j</sup>, j > 0 leads to equivalent but infinite linear system
- Truncation at order N yields approximation

$$\frac{d\hat{y}(t)}{dt} = A\hat{y} \tag{2}$$

where  $\hat{y}(0) = \hat{y}_0 = (x_0, x_0^{\otimes 2}, \dots, x_0^{\otimes N})^T$  and A on next slide

• Dimension of (2) is  $\mathcal{O}(n^N)$ 

<sup>&</sup>lt;sup>1</sup>Carleman. Acta Mathematica (1932).

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Carleman linearization<sup>1</sup>

$$A := \begin{pmatrix} A_1^1 & A_2^1 & 0 & 0 & \cdots & 0 \\ 0 & A_2^2 & A_3^2 & 0 & \cdots & 0 \\ 0 & 0 & A_3^3 & A_4^3 & 0 & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & A_{N-1}^{N-1} & A_N^{N-1} \\ 0 & 0 & \cdots & 0 & 0 & A_N^N \end{pmatrix}$$
$$A_{i+i'-1}^i := \sum_{\nu=1}^i \underbrace{\mathbb{I}_n \otimes \cdots \otimes \underbrace{F_{i'}}_{\substack{i \text{ sctors}}}_{\substack{\uparrow \\ \nu \text{-th position}}} (i' \in \{1, 2\})$$

<sup>1</sup>Carleman. Acta Mathematica (1932).

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

### Example: Logistic equation

• 
$$\frac{dx(t)}{dt} = rx\left(1-\frac{x}{K}\right)$$
  $r > 1, K > 0$ 

- Quadratic form:  $\frac{dx(t)}{dt} = ax + bx^2$  where  $a = r, b = -\frac{r}{K}$
- Lifting:  $\hat{y}_j := x^j$  with derivatives  $\hat{y}'_j = ja\hat{y}_j + jb\hat{y}_{j+1}$  (j > 0)

$$\frac{d\hat{y}(t)}{dt} = \begin{pmatrix} a & b & 0 & 0\\ 0 & 2a & 2b & 0\\ 0 & 0 & 3a & 3b\\ 0 & 0 & 0 & 4a \end{pmatrix} \hat{y}, \quad \hat{y}(0) = \begin{pmatrix} x_0\\ x_0^2\\ x_0^3\\ x_0^4\\ x_0^4 \end{pmatrix}$$

Linearization

Conservative approximation

Evaluation

Conclusion

### Example: Logistic equation



Linearization

Conservative approximation

Evaluation

Conclusion

### Example: Logistic equation



Linearization

Evaluation

Conclusion

### Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Linearization

Conservative approximation

Evaluation

Conclusion

### Error bound

$$\frac{dx(t)}{dt} = F_1 x + F_2 x^{\otimes 2} \tag{1}$$

- Let  $\lambda_1$  be the eigenvalue of  $F_1$  with largest real part
- We call (1) weakly nonlinear if  $R := rac{\|x_0\| \|F_2\|}{|{
  m Re}(\lambda_1)|} < 1$
- We call (1) **dissipative** if  $\text{Re}(\lambda_1) < 0$
- Error of j-th block of variables is  $\eta_j(t) := x^{\otimes j}(t) \hat{y}_j(t)$

#### Theorem<sup>1</sup>

If (1) is weakly nonlinear and dissipative, the error of the N-truncated linear system satisfies (for all  $t \ge 0$ )

$$\|\eta_j(t)\|\leq \|x_0\|R^{\mathsf{N}}(1-e^{\mathsf{Re}(\lambda_1)t})^{\mathsf{N}}$$

<sup>&</sup>lt;sup>1</sup>Liu et al. Proc. Natl. Acad. Sci. (2021).

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Evaluation: SEIR model<sup>1</sup>

• R pprox 0.68,  ${
m Re}(\lambda_1) pprox -0.19$ 

<sup>&</sup>lt;sup>1</sup>Pan et al. *JAMA* (2020).

Linearization

Conservative approximation

Evaluation

Conclusion

# Evaluation: SEIR model<sup>1</sup>

No error estimation



<sup>1</sup>Pan et al. *JAMA* (2020).

Linearization

Conservative approximation

Conclusion

# Evaluation: SEIR model<sup>1</sup>

• Error estimation and re-estimation at t = 4



<sup>1</sup>Pan et al. *JAMA* (2020).

Linearization

Reachability

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion

# Evaluation: SEIR model<sup>1</sup>

|          | no error bound        | incl. error bound          |
|----------|-----------------------|----------------------------|
| ТМ       | 6.14 s                |                            |
| Carleman | <i>N</i> = 2: 0.006 s | $N = 5: 0.185  \mathrm{s}$ |

<sup>&</sup>lt;sup>1</sup>Pan et al. *JAMA* (2020).

Linearization

 $\underset{\bigcirc \bigcirc}{\text{Conservative approximation}}$ 

Evaluation

Conclusion ●○

# Overview

Reachability for continuous systems

Carleman linearization

Conservative approximation

Evaluation



# Conclusion and future work

- Carleman linearization of quadratic systems
- Reachability analysis for set-based approximation
  - Weakly nonlinear and dissipative systems
  - Low orders often suffice
  - Can be faster than nonlinear solvers
  - Error bound for conservative results (wrapping-free!)

Future work

- Exploit problem structure (Kronecker product, sparse block-bidiagonal matrix, ...)
- Automatic re-estimation of error bounds
- Initial condition beyond hyperrectangles