
The inverse problem
for neural networks

AISoLA 2023

Marcelo Forets Christian Schilling

Introduction Computation Applications Conclusion

Neural network
• Layer ℓ : Rm → Rn: affine map followed by activation function

ℓ(x) = α(Wx + b)

• Neural network N : Rm → Rn: composition of k layers

N(x) = (ℓk ◦ · · · ◦ ℓ1)(x)

• Short-hand: ⟨n1, . . . , nk⟩ for the number of neurons per layer

1 / 17

Introduction Computation Applications Conclusion

Forward image computation

• Given: function f : Rm → Rn and input set X ⊆ Rm

• Forward image: f (X) = {f (x) : x ∈ X } ⊆ Rn

• For piecewise-affine activations, these are closed under image:
• Union of polytopes
• Union of polyhedra

2 / 17

Introduction Computation Applications Conclusion

Applications of forward image computation
• Abstract interpretation for robustness verification1,2

B
ri

gh
te

n(
0
.0
8
5,

) A1

C
on

vo
lu

tio
na

l#

A2

M
ax

Po
ol

in
g#

A3

Fu
lly

C
on

ne
ct

ed
#

A4

Fig. 2: A high-level illustration of how AI2 checks that all
perturbed inputs are classified the same way. AI2 first creates
an abstract element A1 capturing all perturbed images. (Here,
we use a 2-bounded set of zonotopes.) It then propagates A1

through the abstract transformer of each layer, obtaining new
shapes. Finally, it verifies that all points in A4 correspond to
outputs with the same classification.

point numbers are used to express pixel intensity, we obtain
more than 101154 possible perturbed images. Thus, proving
the property by running a network exhaustively on all possible
input images and checking if all of them are classified as 8 is
infeasible. To avoid this state space explosion, current methods
(e.g., [18], [21], [34]) symbolically encode the network as
a logical formula and then check robustness properties with
a constraint solver. However, such solutions do not scale to
larger (e.g., convolutional) networks, which usually involve
many intermediate computations.

Key Concept: Abstract Interpretation for AI. The key
insight of our work is to address the above challenge by lever-
aging the classic framework of abstract interpretation (e.g., [6],
[7]), a theory which dictates how to obtain sound, computable,
and precise finite approximations of potentially infinite sets of
behaviors. Concretely, we leverage numerical abstract domains
– a particularly good match, as AI systems tend to heavily
manipulate numerical quantities. By showing how to apply
abstract interpretation to reason about AI safety, we enable one
to leverage decades of research and any future advancements
in that area (e.g., in numerical domains [39]). With abstract
interpretation, a neural network computation is overapproxi-
mated using an abstract domain. An abstract domain consists
of logical formulas that capture certain shapes (e.g., zonotopes,
a restricted form of polyhedra). For example, in Fig. 2, the
green zonotope A1 overapproximates the set of blue points
(each point represents an image). Of course, sometimes, due
to abstraction, a shape may also contain points that will not
occur in any concrete execution (e.g., the red points in A2).

The AI2 Analyzer. Based on this insight, we developed
a system called AI2 (Abstract Interpretation for Artificial
Intelligence)1. AI2 is the first scalable analyzer that hand-
les common network layer types, including fully connected
and convolutional layers with rectified linear unit activations
(ReLU) and max pooling layers.

To illustrate the operation of AI2, consider the example in

1AI2 is available at: http://ai2.ethz.ch

Fig. 2, where we have a neural network, an image of the
digit 8 and a set of perturbations: brightening with parameter
0.085. Our goal is to prove that the neural network classifies
all perturbed images as 8. AI2 takes the image of the digit
8 and the perturbation type and creates an abstract element
A1 that captures all perturbed images. In particular, we can
capture the entire set of brightening perturbations exactly with
a single zonotope. However, in general, this step may result in
an abstract element that contains additional inputs (that is, red
points). In the second step, A1 is automatically propagated
through the layers of the network. Since layers work on
concrete values and not abstract elements, this propagation
requires us to define abstract layers (marked with #) that
compute the effects of the layers on abstract elements. The
abstract layers are commonly called the abstract transformers
of the layers. Defining sound and precise, yet scalable abstract
transformers is key to the success of an analysis based on
abstract interpretation. We define abstract transformers for all
three layer types shown in Fig. 2.

At the end of the analysis, the abstract output A4 is
an overapproximation of all possible concrete outputs. This
enables AI2 to verify safety properties such as robustness
(e.g., are all images classified as 8?) directly on A4. In fact,
with a single abstract run, AI2 was able to prove that a
convolutional neural network classifies all of the considered
perturbed images as 8.

We evaluated AI2 on important tasks such as verifying
robustness and comparing neural networks defenses. For ex-
ample, for the perturbed image of the digit 0 in Fig. 1, we
showed that while a non-defended neural network classified
the FGSM perturbation with ε = 0.3 as 9, this attack is
provably eliminated when using a neural network trained with
the defense of [27]. In fact, AI2 proved that the FGSM attack
is unable to generate adversarial examples from this image for
any ε between 0 and 0.3.

Main Contributions. Our main contributions are:
• A sound and scalable method for analysis of deep neural

networks based on abstract interpretation (Section IV).
• AI2, an end-to-end analyzer, extensively evaluated on

feed-forward and convolutional networks (computing
with 53 000 neurons), far exceeding capabilities of current
systems (Section VI).

• An application of AI2 to evaluate provable robustness of
neural network defenses (Section VII).

II. REPRESENTING NEURAL NETWORKS AS
CONDITIONAL AFFINE TRANSFORMATIONS

In this section, we provide background on feedforward and
convolutional neural networks and show how to transform
them into a representation amenable to abstract interpretation.
This representation helps us simplify the construction and
description of our analyzer, which we discuss in later sections.
We use the following notation: for a vector x ∈ Rn, xi denotes
its ith entry, and for a matrix W ∈ Rn×m, Wi denotes its ith

row and Wi,j denotes the entry in its ith row and jth column.

4

1T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. T. Vechev. SP. 2018.

2C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. Int. J. Softw. Tools
Technol. Transf. (2023).

3 / 17

Introduction Computation Applications Conclusion

Applications of forward image computation
• Abstract interpretation for robustness verification1,2VNN-COMP first three years 333

Fig. 1 Cactus plot for all tools
in the VNN-COMP 2022 across
all benchmarks

Table 3 Points per instance in 2022

Ground truth Returned result

SAT UNSAT Other

SAT +10 −100 0
UNSAT −100 +10 0

This automation allowed each team to perform as many tests
as necessary without the need to wait for feedback from the
organizers. Furthermore, teams could test on the same AWS
instances used during final evaluation without having to pay
for their usage, with the costs kindly covered by the SRI Lab
of ETH Zurich.

Scoring Unlike during the VNN-COMP 2021, SAT in-
stances were not divided into simple and complex for scoring
purposes, leading to 10 points being awarded for all correct
results (see Table 3). Further, instead of relying on a voting
scheme to determine the ground truth in the presence of dis-
sent among tools, the burden of proof was placed on the tool
reporting SAT, requiring them to provide a concrete counter-
example. If no valid counter-example was provided, the cor-
responding tool was judged to be incorrect and awarded the
100 point penalty.

Results Out of the eleven participating teams, α-β-
CROWN placed first, MN-BaB second, and VeriNet third.
For a comparison of all participating tools across all bench-
marks, see Fig. 1.

5 Comparison across the years

In Table 4, we list all tools participating in any iteration of
the VNN-COMP and refer the interested reader to the corre-
sponding VNN-COMP report for a short description of the
tools. In Table 5, we compare the scope of the competition
across the last three years. As can be seen, the number, va-
riety, complexity, and scale of benchmarks increased with

every iteration. Starting with 5 benchmarks covering simple
fully connected (FC) and convolutional (Conv) networks in
2020, the 2022 competition saw 12 benchmarks including
a range of complex residual and U-Net architectures with
up to 140 million parameters. Further, we believe that the
increasing number of registered tools clearly shows that the
interest in both the field in general and the competition in
particular is growing year by year. However, the large and in-
creasing discrepancy between registered and submitted tools
might indicate that many teams feel like they are not able to
invest the significant effort required to support not only the
standardized network and specification formats, but also the
wide variety of different benchmarks. As tools are ranked
by their total score, with each benchmark providing a score
of up to 100%, the final ranking is biased towards tools that
support all benchmarks. While we believe that this is a valu-
able incentive for tool developers to develop methods that
can be easily applied to new problems, it might be daunting
for new teams to implement all necessary features, deterring
them from participating at all.

Successful trends While all teams started out using only
CPUs in 2020, only one of the top four teams relied solely on
CPUs in 2021, and all top three teams chose GPU instances in
2022. This transition enabled both the more efficient evalua-
tion of simple bound propagation methods such as DeepPoly
[50], CROWN [67], and IBP [19], and approximate solutions
of the linear programming (LP) problems arising during ver-
ification [15, 60, 63]. Similarly, the top two teams in 2021
and all top three teams in 2022 relied on a branch-and-bound
(BaB) based approach, recursively breaking down the ver-
ification problem into easier subproblems until it becomes
solvable, thus effectively enabling the use of GPUs to solve
tighter mixed integer linear programming (MILP) encodings
of the verification problem [11, 15, 60, 66]. Both top two
teams in the most recent iteration combined this approach
with additional multi-neuron [15] and solver-generated cut-
ting plane constraints [66], first introduced by the 3rd place
ERAN in 2021 [38]. We thus conclude that successful tools
leverage hardware accelerators such as GPUs to efficiently
handle tight (MI)LP encodings of the verification problem.

Springer

1T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. T. Vechev. SP. 2018.

2C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. Int. J. Softw. Tools
Technol. Transf. (2023).

3 / 17

Introduction Computation Applications Conclusion

Applications of forward image computation
• Verification of neural-network control systems1,2

Demo Abstract : Sherlock - A Tool For Verification Of Neural
Network Feedback Systems

Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, Ashish Tiwari
ABSTRACT
We present an approach for the synthesis and verification of neural
network controllers for closed loop dynamical systems, modelled
as an ordinary differential equation. Feedforward neural networks
are ubiquitous when it comes to approximating functions, espe-
cially in the machine learning literature. The proposed verification
technique tries to construct an over-approximation of the system
trajectories using a combination of tools, such as, Sherlock and
Flow*. In addition to computing reach sets, we incorporate counter
examples or bad traces into the synthesis phase of the controller
as well. We go back and forth between verification and counter
example generation until the system outputs a fully verified con-
troller, or the training fails to terminate in a neural network which
is compliant with the desired specifications. We demonstrate the
effectiveness of our approach over a suite of benchmarks ranging
from 2 to 17 variables.

CCS CONCEPTS
•Computing methodologies→Neural networks; •Computer
systems organization → Embedded and cyber-physical sys-
tems; • Mathematics of computing → Interval arithmetic; Dif-
ferential equations;

KEYWORDS
reachability analysis, polynomial regression , neural network, hy-
brid system, flowpipe construction

ACM Reference Format:
Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, Ashish
Tiwari. 2019. Demo Abstract : Sherlock - A Tool For Verification Of Neural
Network Feedback Systems . In 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19), April 16–18, 2019, Montreal,
QC, Canada. ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/
10.1145/3302504.3313351

1 INTRODUCTION
Neural networks have found their way into a large of gamut of
applications, ranging from autonomous cars and unmanned aerial
vehicles to medical applications. Typically, a neural network is used
to perform tasks related to control, guidance, and classification. In
most of these applications, the neural networks are synthesized or
trained using methods like reinforcement learning, learning from

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6282-5/19/04.
https://doi.org/10.1145/3302504.3313351

ODE
Ûx = f (x, u,w)

FNN
u(jτc) = FN (x(jτc))

Sample
Hold

x(t)

x(jτc)
u(jτc)

w(t)

clk

Figure 1: Block diagram of a neural feedback control system.

demonstrations, or learning from a large precomputed table of con-
trol commands. Interestingly enough, most of these systems are
not correct by construction. We aim to address this by develop-
ing verification techniques that can be potentially included in the
design phase of the system. There has been an upsurge of recent
interests in proving properties about neural networks. Some of
the recent developments in this domain are, [2, 4, 5]. But, a lot
of the recent literature has been around proving assertions about
the neural networks in isolation, things like input-output bounds,
and robustness of image classification networks. In this paper, we
propose and demonstrate techniques which can verify properties
of the dynamical system given by an ODE in a closed loop with
a neural network. The approach is around building reach sets of
the system using Flow* [1] for the ODE part, and Sherlock for the
neural network part. Note that the simple amalgamation of the
intervals computed by reachability tools for the ODE and neural
network doesn’t work for any of the benchmarks we present in this
paper.

2 PROBLEM STATEMENT AND APPROACH
2.1 Problem Statement

Definition 2.1 (Neural Network). A k layer, n input, neural net-
work with N neurons per hidden layer is described by matrices:
(W0, b0), . . ., (Wk−1, bk−1), (Wk , bk), wherein (a)W0, b0 are N × n
and N × 1 matrices denoting the weights connecting the inputs to
the first hidden layer, (b)Wi , bi for i ∈ [1,k − 1] connect layer i to
layer i + 1 and (c)Wk , bk connect the last layer k to the output.

At each neuron the output value gets computed from the input
values using the activation function σ . In general, this function is
usually some non-linear monotonic function, but here we focus on
neural networks with ”Relu” activation function σ (z) : max(z, 0).
Nevertheless, most of the techniques that we present do not in-
trinsically depend on this restriction. Semantically, a neural net-
work N with just a single output computes a continuous function
FN : Rn → R, which is a composition given by FN := Fk ◦ · · · ◦ F0,
where Fi (z) is the function computed by individual layers.

Definition 2.2. (Neural Feedback System) A Neural Feedback Sys-
tem S is tuple ⟨X ,U ,W , f (x ,u,w),N ,τc ⟩, where Ûx = f (x ,u,w),

262

1S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. HSCC. 2019.
2D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner, and C. Schilling.

ARCH. 2023.
3 / 17

Introduction Computation Applications Conclusion

Applications of forward image computation
• Verification of neural-network control systems1,2

1S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. HSCC. 2019.
2D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner, and C. Schilling.

ARCH. 2023.
3 / 17

Introduction Computation Applications Conclusion

Pseudo preimage computation

• Highlighting of relevant pixels in a picture classifier1

Figure 3: Weakly supervised object segmentation using ConvNets (Sect. 3.2). Left: images
from the test set of ILSVRC-2013. Left-middle: the corresponding saliency maps for the top-1
predicted class. Right-middle: thresholded saliency maps: blue shows the areas used to compute
the foreground colour model, cyan – background colour model, pixels shown in red are not used for
colour model estimation. Right: the resulting foreground segmentation masks.

6

1K. Simonyan, A. Vedaldi, and A. Zisserman. ICLR. 2014.
4 / 17

Introduction Computation Applications Conclusion

Pseudo preimage computation

• Highlighting of relevant pixels in a picture classifier1

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.

Before observing the explanations, more than a third
trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [20],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [21] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.

Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to different kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not sufficient. Note that Groce et al. [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5− 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or efficiency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coefficients on the
gradient is difficult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.

1M. T. Ribeiro, S. Singh, and C. Guestrin. KDD. 2016.
4 / 17

Introduction Computation Applications Conclusion

Pseudo preimage computation

• Computing an input that produces a highly confident output1

dumbbell cup dalmatian

bell pepper lemon husky

washing machine computer keyboard kit fox

goose limousine ostrich

Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured
in a single image. Better viewed in colour.

3

1K. Simonyan, A. Vedaldi, and A. Zisserman. ICLR. 2014.
4 / 17

Introduction Computation Applications Conclusion

Actual preimage computation

• Given: function f : Rm → Rn and output set Y ⊆ Rn

• Preimage: f −1(Y) = {x : f (x) ∈ Y} ⊆ Rm

5 / 17

Introduction Computation Applications Conclusion

Actual preimage computation
• Already studied quite early1,2

• Sigmoid activations, approximations, shallow neural networks

�wd�t�2 sd�t��2 is extreme when the derivative of the error
is zero.

2

2t
�wd�t�2 sd�t��2 � 2 × 2

2t
wd�t�2

2

2t
sd�t�

� �
× �wd�t�

2 sd�t��

� 2 × sd�ci11�2 sd�ci�
ci11 2 ci

2 s 0d�t�
� �

× �wd�t�2 sd�t��:

The error is maximum fortm [�ci ; ci11�, such that

s 0d�tm� � sd�ci11�2 sd�ci�
ci11 2 ci

:

If the error at tm is larger than the desired accuracy, the
interval �ci ; ci11� is further divided into two intervals
�ci ; tm� and �tm; ci11� (see Fig. 1). Then the error on the
intervals of this dichotomy is evaluated. This process is
continued until the desired level of accuracy is reached.
No refinement is needed when�ci ; ci11� is in a linear part
of the transfer functions .

The important point to notice is thatw depends onP
and on the desired level of accuracy. The polyhedronP
is partitioned according to the cell partition ofw . The
reciprocal image byw of a polyhedron contained in a
cell of w is computed as for the affine transformation
phase, as the restriction ofw to a cell is an affine
function x 7! w�x� � Dx 1 d, where D is a diagonal
matrix.

The smallest axis-parallel hypercube containing a setR
(region of the activation space) is denoted byA(R). The
vectors lb(R) and ub(R) denote respectively the lower
bounds and upper bounds ofA(R). In other words, thedth

coordinates of the points ofR are contained in the interval
�lbd�R�; ubd�R��.

Backpropagation of a polyhedron (transfer function
phase)
Input: P � { x jAx # b} ; s
Output: A union of polyhedra <Pu ; such that
P � w�<Pu�
Determine A�P�, i.e. the vectors lb(P) and
ub(P)
For each dimension d of layer S,

Determine wd ,
i.e. an appropriate subdivision of
�lb d �P�; ubd �P��

Partition the polyhedron P according to
the subdivisions of the intervals
�lb d �P�; ubd �P��
For each polyhedron Qu of the partition,

Compute the matrix Du and the vector du of
the restriction of w to the cell asso-
ciated with Qu

Backpropagate Qu � { x jAux # bu} ;
i.e. Pu U f 2 1�Qu� � { x jAuDux # bu 2 Adu}

The algorithms that we have sketched in the previous sub-
sections are trivially extended to regions (apply the proce-
dures defined on one polyhedron to all polyhedra constitut-
ing the region).

5. Examples

We have implemented this rule-extraction algorithm in

F. Maire / Neural Networks 12 (1999) 717–725 719

Fig. 1. Determination oftm.1S. Thrun. Tech. rep. University of Bonn, 1994.
2F. Maire. Neural Networks (1999).

5 / 17

Introduction Computation Applications Conclusion

Actual preimage computation
• Implicitly done to compute symbolic representation1

SyReNN: A Tool for Analyzing Deep Neural Network 293

(a) Decision boundaries

computed using f̂�X

(b) Decision bound-
aries computed using
DeepPoly[k = 252]

(c) Decision bound-
aries computed using
DeepPoly[k = 1002]

Legend: Clear-of-Conflict, Weak Right, Strong Right, Strong Left, Weak Left.

Fig. 2: Visualization of decision boundaries for the ACAS Xu network. Using
SyReNN (left) quickly produces the exact decision boundaries. Using abstract
interpretation-based tools like DeepPoly (middle and right) are slower and pro-
duce only imprecise approximations of the decision boundaries.

One approach to such visualizations is to simply sample finitely-many points
and extrapolate the behavior on the entire domain from those finitely-many
points. However, this approach is imprecise and risks missing vital information
because there is no way to know the correct sampling density to use to identify
all important features.

Another approach is to use a tool such as DeepPoly [49] to over-approximate
the output range of the DNN. However, because DeepPoly is a relatively coarse
over-approximation, there may be regions of the input space for which it cannot
state with confidence the decision made by the network. In fact, the approxima-
tions used by DeepPoly are extremely coarse. A näıve application of DeepPoly
to this problem results in it being unable to make claims about any of the in-
put space of interest. In order to utilize it, we must partition the space and
run DeepPoly within each partition, which significantly slows down the analysis.
Even when using 252 partitions, Figure 2b shows that most of the interesting
region is still unclassifiable with DeepPoly (shown in white). Only with 1002 par-
titions can DeepPoly effectively approximate the decision boundaries, although
it is still quite imprecise.

By contrast, f̂�X can be used to exactly determine the decision boundaries
on any 2D polytope subset of the input space, which can then be plotted. This is

shown in Figure 2a. Furthermore, as shown in Table 1, the approach using f̂�X
is significantly faster than that using ERAN, even as we get the precise answer
instead of an approximation. Such visualizations can be particularly helpful in
identifying issues to be fixed using techniques such as those in Section 6.3.

1M. Sotoudeh, Z. Tao, and A. V. Thakur. Int. J. Softw. Tools Technol. Transf.
(2023).

5 / 17

Introduction Computation Applications Conclusion

Actual preimage computation
• Recent strong interest1,2,3,4

NICHOLAS ROBER ET AL.: BACKWARD REACHABILITY ANALYSIS OF NEURAL FEEDBACK LOOPS: TECHNIQUES FOR LINEAR AND NONLINEAR SYSTEMS

Backprojection Sets

Initial Set

Obstacle
Goal

Certified Safe

NN Controller

Target Set

(a) Backward reachability for collision avoidance: BP set estimates (blue)
approximate the set of states that lead to the obstacle (red), thus if the initial
state set does not intersect with any BPs, the situation is safe.

Reachable Sets

Collision Detected

Initial Set

Obstacle Goal

NN Controller

(b) Forward reachability for collision avoidance: forward reachable set
estimates (blue) approximate the set of possible future states of the system,
thus any intersection with an obstacle means safety cannot be certified.

FIGURE 1: Collision avoidance scenario. Backward reach-
ability correctly guarantees safety whereas forward reacha-
bility fails.

guarantees presents computational challenges due to the high
dimensional and nonlinear nature of NNs.

There is a growing body of work focused on synthesizing
NN controllers with safety and performance guarantees [14]–
[19], but this does not preclude the need for verification
and safety analysis after synthesis. To this end, many open-
loop NN analysis tools [20]–[28] have been developed to
make statements about possible NN outputs given a set of
inputs. To extend analysis techniques to closed-loop systems
with NN controllers, i.e., neural feedback loops (NFLs),
there has also been effort towards developing reachability
analysis techniques [28]–[38] that determine how a system’s
state evolves over time. While forward reachability [28]–[37]
certifies safety by checking that possible future states of the
system do not enter dangerous regions, this paper focuses
on backward reachability [38], wherein safety is certified by
checking that the system does not start from a state that could
lead to a dangerous region, as shown in Fig. 1a. Thus, the
challenge of backward reachability analysis is to calculate
backprojection (BP) sets that define regions of the state space
for which the NN control policy will drive the system into a
given target set, which can be chosen to contain a dangerous
part of the state space.

Contrasting Fig. 1a with Fig. 1b shows how backward
reachability can be less conservative than forward reachabil-
ity in scenarios where there are multiple modes for possible
trajectories branching from a given initial state set. In Fig. 1b,
the robot’s position within the initial state set determines
whether it will go above or below the obstacle. The forward
reachable sets must contain all possible future trajectories,
so when the forward reachable sets are represented by single
convex sets (as is the case in [29]–[36]), they must span
the upper and lower trajectories, thus detecting a possible
collision with the obstacle and failing to certify safety.
Alternatively, because the BP sets in Fig. 1a do not intersect
with the initial state set, the robot is not among the states
that leads to an obstacle, allowing backward reachability to
certify safety.

For systems without NNs, switching between forward and
backward reachability analysis is relatively simple [39]–[41].
However, nonlinear activation functions and noninvertible
weight matrices common to NNs make it challenging to
determine a set of inputs given a set of outputs. While
recent work [28], [36], [38] has made advances in backward
reachability of NFLs, there are no existing techniques that
efficiently find BP set estimates over multiple timesteps for
linear and nonlinear systems with feedforward NNs that give
continuous outputs. Thus, our contributions include:
• A set of algorithms that enable computationally efficient

safety certification of linear and nonlinear NFLs by
calculating over-approximations of BP sets.

• Validation of our methods using numerical experi-
ments for control-relevant applications including obsta-
cle avoidance for mobile robots and quadrotors.

This work extends prior work [42] by introducing:
• HyBReach-LP: A hybrid of the two previously pro-

posed algorithms [42] that improves the tradeoff be-
tween conservativeness and computation time.

• A guided partitioning algorithm that reduces conserva-
tiveness faster than uniform partitioning strategies.

• BReach-MILP: an algorithm to compute BP sets for
systems with nonlinear dynamics using techniques de-
veloped by Sidrane et al. [35].

• Numerical experiments that exhibit our BP estimation
techniques on higher-order and nonlinear systems, in-
cluding an ablation study marking improvements from
[42].

II. Related Work
This section describes how reachability analysis can be
applied to three categories of systems: NNs in isolation
(i.e., open-loop analysis), closed-loop systems without neural
components, and NFLs.

Open-loop NN analysis refers to methods that determine a
relation between sets of inputs to an NN and sets of the NN’s
output. Open-loop NN analysis encompasses techniques that
relax the nonlinearities in the NN activation functions to
quickly provide relatively conservative bounds on NN out-

2 VOLUME 00 2021

1S. Bak and H. Tran. NFM. 2022.
2N. Rober et al. CoRR (2022). arXiv: 2209.14076.
3M. Everett, R. Bunel, and S. Omidshafiei. IEEE Control. Syst. Lett. (2023).
4S. Kotha, C. Brix, Z. Kolter, K. Dvijotham, and H. Zhang. CoRR (2023). arXiv:

2302.01404.
5 / 17

https://arxiv.org/abs/2209.14076
https://arxiv.org/abs/2302.01404

Introduction Computation Applications Conclusion

Overview

Introduction

Computation

Applications

Conclusion

6 / 17

Introduction Computation Applications Conclusion

Inverse affine map

Given: output polyhedron Y ⊆ Rn written as Cy ≤ d and
affine map f (x) = Wx + b with W ∈ Rn×m and b ∈ Rn

f −1(Y) = {x : C(Wx + b) ≤ d} = {x : CWx ≤ d − Cb}

Example
For the affine map f (x) =

(
−0.46 0.32

)
x + 2 and the interval

Y = [2, 3], we get the infinite band
f −1(Y) = {x ∈ R2 : 0 ≤

(
−0.46 0.32

)
x ≤ 1}

7 / 17

Introduction Computation Applications Conclusion

Inverse affine map

Given: output polyhedron Y ⊆ Rn written as Cy ≤ d and
affine map f (x) = Wx + b with W ∈ Rn×m and b ∈ Rn

f −1(Y) = {x : C(Wx + b) ≤ d} = {x : CWx ≤ d − Cb}

Example
For the affine map f (x) =

(
−0.46 0.32

)
x + 2 and the interval

Y = [2, 3], we get the infinite band
f −1(Y) = {x ∈ R2 : 0 ≤

(
−0.46 0.32

)
x ≤ 1}

7 / 17

Introduction Computation Applications Conclusion

Inverse piecewise-affine activation
Given: output set Y ⊆ Rn and piecewise-affine activation α:

• Componentwise definition α(x) = [α(x1), . . . , α(xn)]
• Partitioning Π of Rn such that αj is affine in each partition Pj
• Affine: α(x) = Cx + d

α−1(Y) = α−1(⋃
j
αj(Pj) ∩ Y

)
=

⋃
j
α−1

j (αj(Pj) ∩ Y)

This holds for general piecewise activation functions
If αj is affine, α−1

j (αj(Pj) ∩ Y) simplifies to

Pj ∩ α−1
j (Y)

If αj is constant with αj(x) = d , it simplifies further to{
Pj d ∈ Y
∅ d /∈ Y

8 / 17

Introduction Computation Applications Conclusion

Inverse piecewise-affine activation
Given: output set Y ⊆ Rn and piecewise-affine activation α:

• Componentwise definition α(x) = [α(x1), . . . , α(xn)]
• Partitioning Π of Rn such that αj is affine in each partition Pj
• Affine: α(x) = Cx + d

α−1(Y) = α−1(⋃
j
αj(Pj) ∩ Y

)
=

⋃
j
α−1

j (αj(Pj) ∩ Y)

This holds for general piecewise activation functions

If αj is affine, α−1
j (αj(Pj) ∩ Y) simplifies to

Pj ∩ α−1
j (Y)

If αj is constant with αj(x) = d , it simplifies further to{
Pj d ∈ Y
∅ d /∈ Y

8 / 17

Introduction Computation Applications Conclusion

Inverse piecewise-affine activation
Given: output set Y ⊆ Rn and piecewise-affine activation α:

• Componentwise definition α(x) = [α(x1), . . . , α(xn)]
• Partitioning Π of Rn such that αj is affine in each partition Pj
• Affine: α(x) = Cx + d

α−1(Y) = α−1(⋃
j
αj(Pj) ∩ Y

)
=

⋃
j
α−1

j (αj(Pj) ∩ Y)

This holds for general piecewise activation functions
If αj is affine, α−1

j (αj(Pj) ∩ Y) simplifies to

Pj ∩ α−1
j (Y)

If αj is constant with αj(x) = d , it simplifies further to{
Pj d ∈ Y
∅ d /∈ Y

8 / 17

Introduction Computation Applications Conclusion

Inverse deep neural network

function preimage(Z, N)
for ℓ in ℓk, ..., ℓ1

Y = preimage(Z, αℓ)
X = preimage(Y, Wℓ, bℓ)
Z = X

end
return Z

end

9 / 17

Introduction Computation Applications Conclusion

Complexity

• A neural network with k layers of dimension n can (forward)
map a polyhedron to O(bkn) polyhedra, where b is the
number of affine pieces in the activation (b = 2 for ReLU)1

• The same holds for the preimage

• In practice the growth is often moderate for forward images
• For backward images the growth is much worse

Probably because we quickly get unbounded sets

1G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. NeurIPS. 2014.
10 / 17

Introduction Computation Applications Conclusion

Example

• Structure ⟨2, 2, 2⟩ with ReLU activations (ρ)

11 / 17

Introduction Computation Applications Conclusion

Example

300 uniform samples x ∈ [0, 1]2

Colors show the classification of y = N(x)

11 / 17

Introduction Computation Applications Conclusion

Example

Forward image N([0, 1]2) with samples
Next we compute the preimage of Y0 = {y : y1 ≤ y2}

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage Y1 = ℓ−1
3 (Y0)

(Identity activation in last layer)

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage Y2 = ρ−1(Y1)

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage Y3 = ℓ−1
2 (Y1)

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage Y4 = ρ−1(Y3)

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage Y5 = ℓ−1
1 (Y3) = N−1(Y0)

(Original domain [0, 1]2 in red)

11 / 17

Introduction Computation Applications Conclusion

Example

Preimage N−1(Y0) added

11 / 17

Introduction Computation Applications Conclusion

Overview

Introduction

Computation

Applications

Conclusion

12 / 17

Introduction Computation Applications Conclusion

Interpretability
• Train N with structure ⟨3, 3, 1⟩ to approximate f (x) = x2/20

from 100 samples over [−20, 20]
• 500 samples of f (red) and N (blue)
• Preimages (yellow) for 20 intervals over codomain [0, 20]

• Can prove that N−1({y : y ≤ 0}) = ∅

13 / 17

Introduction Computation Applications Conclusion

Approximation schemes
• Underapproximation

• Issue: subsets may become empty
• Search problem, need heuristics

• Overapproximation
• Example with interval approximation
• Structure ⟨2, 2, 2⟩, leaky-ReLU activations
• Computation ca. 100x faster

14 / 17

Introduction Computation Applications Conclusion

Forward-backward computation

• Intervals useful for monotonic activations (e.g., sigmoids)
• Structure ⟨2, 1⟩, approximates “XOR over [0, 1] ⊆ R”1

• x-axis: iterations of forward-backward computation

input neuron 1 input neuron 2 hidden neuron 1 hidden neuron 2 output neuron

• Proves: x1 ∈ [0, 0.2] ∧ x2 ∈ [0.8, 1] =⇒ N(x) ∈ [0.51, 0.79]

1S. Thrun. Tech. rep. University of Bonn, 1994.
15 / 17

Introduction Computation Applications Conclusion

Forward-backward computation

• Intervals useful for monotonic activations (e.g., sigmoids)
• Structure ⟨2, 1⟩, approximates “XOR over [0, 1] ⊆ R”1

• x-axis: iterations of forward-backward computation

input neuron 1 input neuron 2 hidden neuron 1 hidden neuron 2 output neuron

• Proves: x1 ∈ [0, 0.2] ∧ N(x) ∈ [0.5, 1]
=⇒ x2 ∈ [0, 0.41] ∧ N(x) ∈ [0.5, 86]

1S. Thrun. Tech. rep. University of Bonn, 1994.
15 / 17

Introduction Computation Applications Conclusion

Forward-backward computation

• Intervals useful for monotonic activations (e.g., sigmoids)
• Structure ⟨2, 1⟩, approximates “XOR over [0, 1] ⊆ R”1

• x-axis: iterations of forward-backward computation

input neuron 1 input neuron 2 hidden neuron 1 hidden neuron 2 output neuron

• Proves: x1, x2 /∈ [0, 0.2] ∨ N(x) /∈ [0.5, 1]

1S. Thrun. Tech. rep. University of Bonn, 1994.
15 / 17

Introduction Computation Applications Conclusion

Overview

Introduction

Computation

Applications

Conclusion

16 / 17

Introduction Computation Applications Conclusion

Conclusion

• Preimage can be obtained fairly easily (at least conceptually)
• Non-injective operations (ReLU, max-pooling) conceal preimage
• Combination with forward image
• Partitioning of input space for classifiers

• Future work:
• Sound piecewise-affine approximations of activations
• Use preimage to optimize an objective

(e.g., find the least robust inputs)

17 / 17

	Introduction
	Computation
	Applications
	Conclusion

