The inverse problem for neural networks

AISoLA 2023

Christian Schilling

Neural network

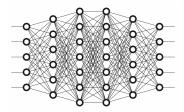
• Layer $\ell: \mathbb{R}^m \to \mathbb{R}^n$: affine map followed by activation function

$$\ell(x) = \alpha(Wx + b)$$

• Neural network $N: \mathbb{R}^m \to \mathbb{R}^n$: composition of k layers

$$N(x) = (\ell_k \circ \cdots \circ \ell_1)(x)$$

• Short-hand: $\langle n_1, \ldots, n_k \rangle$ for the number of neurons per layer

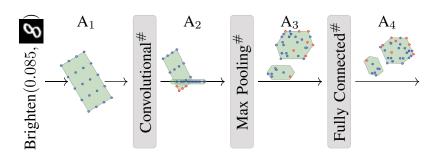


Introduction

Applications

- Given: function $f: \mathbb{R}^m \to \mathbb{R}^n$ and input set $\mathcal{X} \subseteq \mathbb{R}^m$
- Forward image: $f(\mathcal{X}) = \{f(x) : x \in \mathcal{X}\} \subseteq \mathbb{R}^n$
- For piecewise-affine activations, these are closed under image:
 - Union of polytopes
 - Union of polyhedra

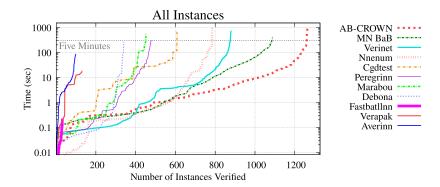
• Abstract interpretation for robustness verification 1,2



 $^{^1\}mathrm{T.}$ Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. T. Vechev. SP.~2018.

²C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. *Int. J. Softw. Tools Technol. Transf.* (2023).

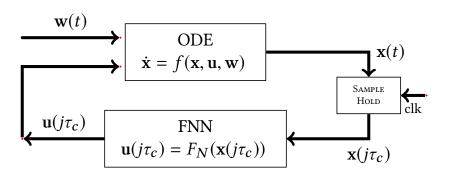
Abstract interpretation for robustness verification^{1,2}



 $^{^1\}mathrm{T.}$ Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. T. Vechev. SP.~2018.

²C. Brix, M. N. Müller, S. Bak, T. T. Johnson, and C. Liu. *Int. J. Softw. Tools Technol. Transf.* (2023).

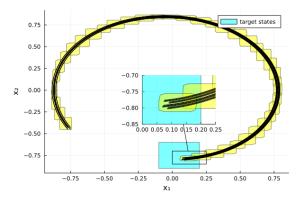
• Verification of neural-network control systems^{1,2}



¹S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. *HSCC*. 2019.

²D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner, and C. Schilling. *ARCH*, 2023.

Verification of neural-network control systems^{1,2}



¹S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari. *HSCC*. 2019.

²D. M. Lopez, M. Althoff, M. Forets, T. T. Johnson, T. Ladner, and C. Schilling. *ARCH*. 2023.

Pseudo preimage computation

Highlighting of relevant pixels in a picture classifier¹

¹K. Simonyan, A. Vedaldi, and A. Zisserman. ICLR. 2014.

Pseudo preimage computation

Highlighting of relevant pixels in a picture classifier¹

(a) Husky classified as wolf

(b) Explanation

¹M. T. Ribeiro, S. Singh, and C. Guestrin. KDD. 2016.

Pseudo preimage computation

Computing an input that produces a highly confident output¹

goose

ostrich

¹K. Simonyan, A. Vedaldi, and A. Zisserman. ICLR. 2014.

Introduction

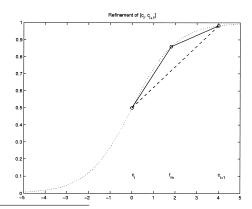
000000

Actual preimage computation

- Given: function $f: \mathbb{R}^m \to \mathbb{R}^n$ and output set $\mathcal{Y} \subseteq \mathbb{R}^n$
- Preimage: $f^{-1}(\mathcal{Y}) = \{x : f(x) \in \mathcal{Y}\} \subseteq \mathbb{R}^m$

Actual preimage computation

- Already studied quite early^{1,2}
- Sigmoid activations, approximations, shallow neural networks

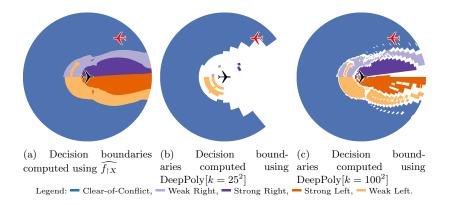


¹S. Thrun. Tech. rep. University of Bonn, 1994.

²F. Maire. Neural Networks (1999).

Actual preimage computation

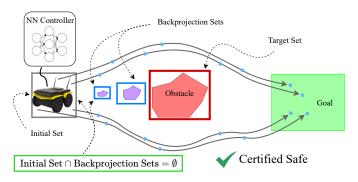
• Implicitly done to compute symbolic representation¹



¹M. Sotoudeh, Z. Tao, and A. V. Thakur. *Int. J. Softw. Tools Technol. Transf.* (2023).

Actual preimage computation

• Recent strong interest^{1,2,3,4}



¹S. Bak and H. Tran. NFM. 2022.

²N. Rober et al. *CoRR* (2022). arXiv: 2209.14076.

³M. Everett, R. Bunel, and S. Omidshafiei. *IEEE Control. Syst. Lett.* (2023).

⁴S. Kotha, C. Brix, Z. Kolter, K. Dvijotham, and H. Zhang. *CoRR* (2023). arXiv: 2302.01404.

Overview

Introduction

Computation

Applications

Conclusion

Applications

Given: output polyhedron $\mathcal{Y} \subseteq \mathbb{R}^n$ written as $Cy \leq d$ and affine map f(x) = Wx + b with $W \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$

$$f^{-1}(\mathcal{Y}) = \{x : C(Wx + b) \le d\} = \{x : CWx \le d - Cb\}$$

Inverse affine map

Applications

Given: output polyhedron $\mathcal{Y} \subseteq \mathbb{R}^n$ written as $Cy \leq d$ and affine map f(x) = Wx + b with $W \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$

$$f^{-1}(\mathcal{Y}) = \{x : C(Wx + b) \le d\} = \{x : CWx \le d - Cb\}$$

Example

For the affine map $f(x) = \begin{pmatrix} -0.46 & 0.32 \end{pmatrix} x + 2$ and the interval $\mathcal{Y} = [2, 3]$, we get the infinite band $f^{-1}(\mathcal{Y}) = \{x \in \mathbb{R}^2 : 0 \le \begin{pmatrix} -0.46 & 0.32 \end{pmatrix} x \le 1\}$

Given: output set $\mathcal{Y} \subseteq \mathbb{R}^n$ and piecewise-affine activation α :

- Componentwise definition $\alpha(x) = [\alpha(x_1), \dots, \alpha(x_n)]$
- Partitioning Π of \mathbb{R}^n such that α_i is affine in each partition \mathcal{P}_i
- Affine: $\alpha(x) = Cx + d$

Applications

Given: output set $\mathcal{Y} \subseteq \mathbb{R}^n$ and piecewise-affine activation α :

- Componentwise definition $\alpha(x) = [\alpha(x_1), \dots, \alpha(x_n)]$
- Partitioning Π of \mathbb{R}^n such that α_i is affine in each partition \mathcal{P}_i
- Affine: $\alpha(x) = Cx + d$ $\alpha^{-1}(\mathcal{Y}) = \alpha^{-1}(\bigcup_{i} \alpha_{j}(\mathcal{P}_{j}) \cap \mathcal{Y}) = \bigcup_{i} \alpha_{j}^{-1}(\alpha_{j}(\mathcal{P}_{j}) \cap \mathcal{Y})$

This holds for general piecewise activation functions

Given: output set $\mathcal{Y} \subseteq \mathbb{R}^n$ and piecewise-affine activation α :

- Componentwise definition $\alpha(x) = [\alpha(x_1), \dots, \alpha(x_n)]$
- Partitioning Π of \mathbb{R}^n such that α_i is affine in each partition \mathcal{P}_i
- Affine: $\alpha(x) = Cx + d$ $\alpha^{-1}(\mathcal{Y}) = \alpha^{-1}(\bigcup_{i} \alpha_{j}(\mathcal{P}_{j}) \cap \mathcal{Y}) = \bigcup_{i} \alpha_{j}^{-1}(\alpha_{j}(\mathcal{P}_{j}) \cap \mathcal{Y})$

This holds for general piecewise activation functions If α_i is affine, $\alpha_i^{-1}(\alpha_i(\mathcal{P}_i) \cap \mathcal{Y})$ simplifies to

$$\mathcal{P}_j \cap \alpha_j^{-1}(\mathcal{Y})$$

If α_i is constant with $\alpha_i(x) = d$, it simplifies further to

$$\begin{cases} \mathcal{P}_j & d \in \mathcal{Y} \\ \emptyset & d \notin \mathcal{Y} \end{cases}$$

Inverse deep neural network

```
function preimage(Z, N)
     for \ell in \ell_k, ..., \ell_1
          Y = preimage(Z, \alpha_{\ell})
          X = \text{preimage}(Y, W_{\ell}, b_{\ell})
          Z = X
     end
     return Z
end
```

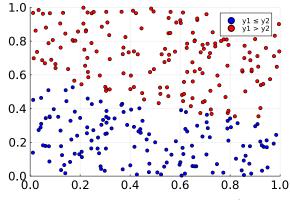
- A neural network with k layers of dimension n can (forward) map a polyhedron to $\mathcal{O}(b^{kn})$ polyhedra, where b is the number of affine pieces in the activation $(b = 2 \text{ for ReLU})^1$
- The same holds for the preimage
- In practice the growth is often moderate for forward images
- For backward images the growth is much worse Probably because we quickly get unbounded sets

¹G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. NeurIPS. 2014.

Example

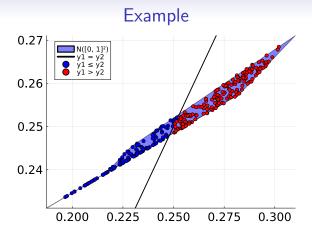
• Structure $\langle 2, 2, 2 \rangle$ with ReLU activations (ρ)

Example

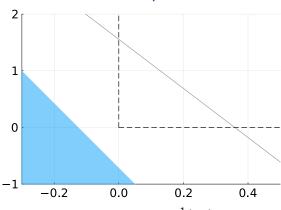


300 uniform samples $x \in [0, 1]^2$

Colors show the classification of y = N(x)

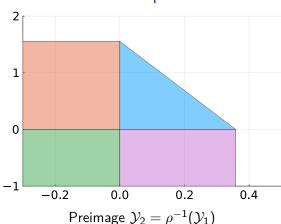


Forward image $N([0,1]^2)$ with samples Next we compute the preimage of $\mathcal{Y}_0=\{y:y_1\leq y_2\}$

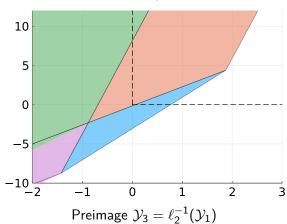


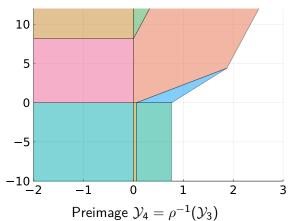
Preimage $\mathcal{Y}_1 = \ell_3^{-1}(\mathcal{Y}_0)$

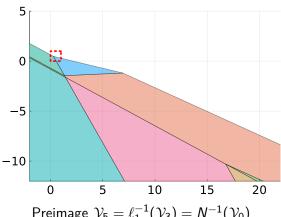
(Identity activation in last layer)



Preimage $\mathcal{Y}_2 = \rho^{-1}(\mathcal{Y}_1)$

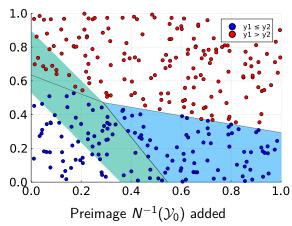






Preimage $\mathcal{Y}_5 = \ell_1^{-1}(\mathcal{Y}_3) = N^{-1}(\mathcal{Y}_0)$ (Original domain $[0,1]^2$ in red)

Example



Overview

Introduction

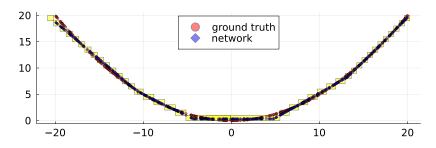
Computation

Applications

Conclusion

Interpretability

- Train N with structure $\langle 3, 3, 1 \rangle$ to approximate $f(x) = x^2/20$ from 100 samples over [-20, 20]
- 500 samples of f (red) and N (blue)
- Preimages (yellow) for 20 intervals over codomain [0, 20]



• Can prove that $N^{-1}(\{y:y\leq 0\})=\emptyset$

Approximation schemes

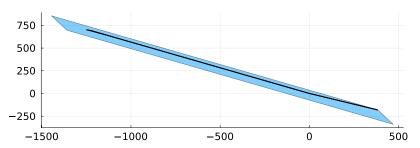
Applications

Underapproximation

- Issue: subsets may become empty
- Search problem, need heuristics

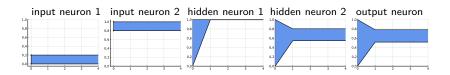
Overapproximation

- Example with interval approximation
- Structure (2, 2, 2), leaky-ReLU activations
- Computation ca. 100x faster



Forward-backward computation

- Intervals useful for monotonic activations (e.g., sigmoids)
- Structure (2,1), approximates "XOR over $[0,1] \subseteq \mathbb{R}^{n-1}$ "
- x-axis: iterations of forward-backward computation

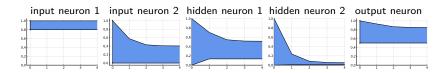


• Proves: $x_1 \in [0, 0.2] \land x_2 \in [0.8, 1] \implies N(x) \in [0.51, 0.79]$

¹S. Thrun. Tech. rep. University of Bonn, 1994.

Forward-backward computation

- Intervals useful for monotonic activations (e.g., sigmoids)
- Structure (2,1), approximates "XOR over $[0,1] \subseteq \mathbb{R}^{n-1}$ "
- x-axis: iterations of forward-backward computation

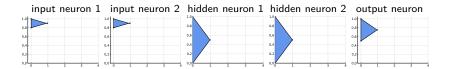


• Proves: $x_1 \in [0, 0.2] \land N(x) \in [0.5, 1]$ $\implies x_2 \in [0, 0.41] \land N(x) \in [0.5, 86]$

¹S. Thrun. Tech. rep. University of Bonn, 1994.

Forward-backward computation

- Intervals useful for monotonic activations (e.g., sigmoids)
- Structure (2,1), approximates "XOR over $[0,1] \subseteq \mathbb{R}^{n-1}$ "
- x-axis: iterations of forward-backward computation



• Proves: $x_1, x_2 \notin [0, 0.2] \vee N(x) \notin [0.5, 1]$

¹S. Thrun. Tech. rep. University of Bonn, 1994.

Overview

Introduction

Computation

Applications

Conclusion

Conclusion

- Preimage can be obtained fairly easily (at least conceptually)
- Non-injective operations (ReLU, max-pooling) conceal preimage
- Combination with forward image
- Partitioning of input space for classifiers
- Future work:
 - Sound piecewise-affine approximations of activations
 - Use preimage to optimize an objective (e.g., find the least robust inputs)